

Code Parallelization with CAPO

— A User Manual

Haoqiang Jin, Michael Frumkin and Jerry Yan

NASA Advanced Supercomputing (NAS) Division
M/S T27A-2 • NASA Ames Research Center

Moffett Field • CA 94035-1000
capo@nas.nasa.gov

http://www.nas.nasa.gov/Tools/CAPO/

NAS Technical Report NAS-01-008, August 2001

CAPO User Manual ii

CONTENTS

Using CAPO 1
1. General Information 2

2. Computer-Aided Parallelization Process 4

3. Producing Parallel Code with CAPO 10

4. Interacting with the Directives Browser 13

5. Other Features 18

6. Case Studies 21

References 25

Tutorials 26
Tutorial 1. A Simple Jacobi Code 27

Tutorial 2. NPB LU-hp Removing False Dependences 28

Tutorial 3. NPB MG User-Defined Loop Type 32

Tutorial 4. A CFD Application TEAMKE1 36

Tutorial 5. Mix of Message-Passing and OpenMP 44

Appendix 53
A1. Parameters for CAPO 54

A2. Messages and Symbols in the Log File 59

A3. CAPO Graphical User Interface 68

A4. CAPO Command Interface 87

CAPO User Manual 1

USING CAPO

Contents

1. General Information 2

1.1. What is CAPO 2

1.2. Distribution and Contact Information 2

1.3. Installation and Execution 3

1.4. How to Use This Manual 3

2. Computer-Aided Parallelization Process 4

2.1. The OpenMP Programming Model 4

2.2. CAPTools 5

2.3. Generating OpenMP Directives 5

2.4. Data Dependence 6

3. Producing Parallel Code with CAPO 10

3.1. Prepare Serial FORTRAN Codes 10

3.2. Make Dependence Analysis 10

3.3. Inspect Loops and Optimize Directive Generation 11

3.4. Generate Parallel Code with Directives 12

3.5. Inspect the Generated Code and the Log Information 12

3.6. Compile and Run the Parallel Code 12

4. Interacting with the Directives Browser 13

4.1. Loop Classification 14

4.2. Browsing Different Types of Loops 15

4.3. Enforcing New Loop Type 17

4.4. Routine Duplication 17

5. Other Features 18

5.1. CAPO Parameters and Log Information 18

5.2. Automatic Code Transformation and Optimization 18

5.3. Command Interface and the Batch Mode 19

5.4. Parallel I/O 19

5.5. Mix of Message Passing and OpenMP 19

6. Case Studies 21

6.1. The NAS Parallel Benchmarks 21

6.2. ARC3D 22

6.3. OVERFLOW 23

References 25

CAPO User Manual 2

1. General Information

1.1. What is CAPO

CAPO (CAPTools-based Automatic Parallelizer using OpenMP) automates the insertion of compiler
directives to facilitate parallel processing on shared memory parallel (SMP) machines. While CAPO is
currently integrated seamlessly into CAPTools [3] (developed at the University of Greenwich), CAPO is
independently developed at NASA Ames Research Center as one of the components for the Legacy
Code Modernization (LCM) project. Utilizing the data dependence information produced by
CAPTools, CAPO produces either OpenMP or SGI multiprocessing directives for sequential FORTRAN
programs with nominal user interaction. Due to the broad support of the OpenMP standard [12], the
generated OpenMP codes can potentially run on a wide range of SMP machines. Generation of a mixed
message-passing (e.g. MPI [11]) and OpenMP code is possible because of the implementation of CAPO
within CAPTools.

The success of CAPO relies on accurate interprocedual data dependence information which is provided
by CAPTools. CAPO generates compiler directives in three stages:

1) identification of parallel loops in the outer-most level,
2) construction and optimization of parallel regions around parallel loops, and

3) insertion of directives with a proper list of private, reduction, and shared variables.

Attempts have also been made to identify potential pipeline parallelism (implemented with point-to-
point synchronization). Although the user is still expected to inspect the generated code before actual
execution, the task has been simplified tremendously by the automation process and the built-in
graphical user interface, known as the Directives Browser. The Directives Browser provides tools for
the user to interact with the parallelization process. It presents information in such a way that the user
can easily isolate problematic code sections from the rest of the code and find a solution quickly.

1.2. Distribution and Contact Information

CAPO is currently implemented within CAPTools and distributed directly from NASA Ames Research
Center. It is released in a similar way as the standard CAPTools distribution. The distributed executable
of CAPO includes all the functionality of CAPTools for generating message-passing programs as well as
the capability of producing OpenMP codes. So the user needs only to maintain one copy that is
distributed with CAPO to access the functionality of both CAPTools and CAPO.

To obtain a copy of CAPO, the user should send a request to capo@nas.nasa.gov. A license is needed to
run CAPTools/CAPO. A test license may be obtained from the CAPTools web site (see below) or by
sending email to captools@gre.ac.uk. For NASA users, please contact capo@nas.nasa.gov directly.

For any feedback and bug reporting on CAPO, please send email to:

CAPO Development Team at capo@nas.nasa.gov.

For any feedback and user support on CAPTools, please contact:

captools-support@gre.ac.uk or check the web site at http://captools.gre.ac.uk/.

For more information on the LCM project, check:

http://www.nas.nasa.gov/Groups/Tools/Projects/LCM.

U S I N G C A P O : G E N E R A L I N F O R M A T I O N

CAPO User Manual 3

1.3. Installation and Execution

Once the user has obtained a copy of CAPO in a compressed tar file, extract files by

% gunzip -c capo-sgi-1.1.tar.gz | tar xvf -

The CAPO distribution is maintained in a similar directory structure as the CAPTools distribution does.
For example the executable of CAPO is in

captool/bin/{machine}/capo

where {machine} is sgi for SGI machine running IRIX, sun for SUN workstation running Solaris, and
linux_x86 for Intel machine running Linux.

The user should follow the same installation procedure to CAPTools to set up CAPO. For the
installation and use of CAPTools, please refer to the CAPTools User Manual [9] and the web site at
http://captools.gre.ac.uk/. In summary, the user needs to set up the following environment variables:

CAPHOME – home directory for the CAPTools/CAPO installation
OPENWINHOME – home directory for the XVIEW library
CAPLIBHOME – home directory for CAPLib (not necessary for OpenMP codes).

and add "$CAPHOME/bin/{machine}" to the searching path, e.g. in csh:

setenv CAPHOME /usr/local/captool
setenv OPENWINHOME $CAPHOME/openwin
set path = ($CAPHOME/bin/sgi $path)

CAPO is then ready for use.

1.4. How to Use This Manual

The manual is organized into three parts around the use of CAPO:

1) Using CAPO – discusses the fundamentals of using CAPO to parallelize codes,
2) Tutorials – gives hands-on experiences, and

3) Appendix – lists detailed references of parameters and the graphical user interface.

For major changes in different versions of CAPO, see the WhatsNew file included in the CAPO
distribution.

Convention generally followed in this manual:

Italic address (including email), URL, remarks, emphasis

Courier code list, syntax description, program outputs
Bold window name, menu name, list name
Bold italic summary head, menu item

Box button, setting selection

Throughout this document, the references to CAPO describe the OpenMP generation and the relevant
components and the references to CAPTools describe all other features, but sometimes these two terms
are used interchangeably for shared components.

CAPO User Manual 4

2. Computer-Aided Parallelization Process

The shared memory and distributed memory programming paradigms are two of the most popular
models used to transform existing serial codes to a parallel form. For a distributed memory
parallelization it is necessary to consider the whole program when using an SPMD paradigm. Data
placement is an essential consideration to efficiently use the available distributed memory, while the
placement of explicit communication calls requires careful consideration. Nowadays, scalability and
high performance mostly involve hand-written parallel programs using message-passing libraries (e.g.
MPI [11]). However, this process is very difficult.

The parallelization on a shared memory system is relatively easier because of the globally addressable
space. The data placement appears to be less crucial than for a distributed memory parallelization.
Historically, the lack of a programming standard for using directives and the rather limited
performance due to scalability have affected the acceptance of the shared memory programming model
approach. In recent years significant progress has been made in hardware and software technologies, as
a result the performance of parallel programs with compiler directives has also made improvements.
The introduction of an industrial standard for shared-memory programming with directives, OpenMP
[12], has addressed the issue of portability.

In general the parallelization process in any case is error-prone, time-consuming and requires a detailed
level of expertise. Programming with directives may not necessarily produce a result that enhances
performance. In the worst case, the inserted directives can create erroneous results when used
incorrectly. While vendors may have provided tools to perform error-checking and profiling,
automation in directive insertion is very limited and often fails on large programs, primarily due to the
lack of a thorough enough data dependence analysis. Presence of these deficiencies motivated the
development of the parallelization tool, CAPO. The tool automatically inserts OpenMP directives in
Fortran programs and applies a degree of optimization with nominal user interaction. CAPO is aimed
at taking advantage of the detailed interprocedural data dependence analysis provided by Computer-
Aided Parallelization Tools (CAPTools) [3], developed by the University of Greenwich, to reduce
potential errors made by users and, with nominal help from user, achieve performance close to that
obtained when directives are inserted by hand. Our approach is different from other tools and
compilers in two respects: 1) emphasizing the quality of dependence analysis and relaxing much of the
time constraint on the analysis; 2) performing directive insertion and preserving the original code
structure for maintainability. Translation of OpenMP codes to executables is left to dedicated OpenMP
compilers.

In this section, we outline the OpenMP programming model, give an overview of CAPTools, and then
its extension, CAPO, for generating OpenMP programs. To better understand and use the tools, we also
describe the basic concept of data dependence here.

2.1. The OpenMP Programming Model

OpenMP [12] was designed to facilitate portable implementation of shared memory parallel programs.
It includes a set of compiler directives and callable runtime library routines that extend Fortran, C and
C++ to support shared memory parallelism. It can provide an incremental path for parallelizing
sequential software, as well as targeting the scalability and performance for any complete rewrites or
new construction of applications.

OpenMP follows the fork-and-join execution model. A fork-and-join program initializes as a single
lightweight process, called the master thread. The master thread executes sequentially until the first
parallel construct (OMP PARALLEL) is encountered. At that point, the master thread creates a team of
threads, including itself as a member of the team, to concurrently execute the statements in the parallel

U S I N G C A P O : C O M P U T E R - A I D E D P A R A L L E L I Z A T I O N P R O C E S S

CAPO User Manual 5

construct. When a work-sharing construct such as a parallel do (OMP DO) is encountered, the workload
is distributed among the members of the team. An implied synchronization occurs at the end of the DO
loop unless a “NOWAIT” is specified. Data sharing of variables is specified at the start of parallel or
work-sharing constructs using the SHARED and PRIVATE clauses. In addition, reduction operations
(such as summation) can be specified by the REDUCTION clause. Upon completion of the parallel
construct, the threads in the team synchronize and only the master thread continues execution. The
fork-and-join process can be repeated many times in the course of program execution. However, it
should be appreciated that for every fork (PARALLEL region) there is an associated setup cost that is
machine dependent.

Beyond the inclusion of parallel constructs to distribute work to multiple threads, OpenMP introduces a
powerful concept of orphan directives that greatly simplifies the task of implementing coarse grain
parallel algorithms. Orphan directives are directives outside the lexical extent of a parallel region. This
allows the user to specify control or synchronization from anywhere inside the parallel region, not just
from the lexically contained region.

2.2. CAPTools

The Computer-Aided Parallelization Tools (CAPTools) [3] is a software toolkit that was designed to
automate the generation of message-passing parallel code. CAPTools accepts FORTRAN-77 serial code
as input, performs extensive dependence analysis, and uses domain decomposition to exploit
parallelism. The toolkit employs sophisticated algorithms to calculate execution control masks and
attempts to minimize communication cost. The generated parallel code contains calls to a portable
interface to message passing standards, such as MPI and PVM, through a low-overhead library
(CAPLib).

There are two important strengths that make CAPTools stand out. Firstly, an extensive set of
enhancements to the conventional dependence analysis techniques [8] has allowed CAPTools to obtain
much more accurate dependence information, and thus, produce more efficient parallel code. Secondly,
the toolkit contains a set of browsers [9] that allow the user to inspect and assist in the parallelization at
different stages.

2.3. Generating OpenMP Directives

The goal of developing computer-aided tools to help parallelize applications is to let the tools do as
much as possible and to try and minimize the amount of tedious and error-prone work performed by
the user. The key to automatic detection of parallelism in a program, and thus parallelization, is to
obtain accurate data dependences in the program. Generating OpenMP directives is simplified
somehow because we are now working in a globally addressed space without being explicitly
concerned about data distribution. However, we still have to realize that there are always cases in
which certain conditions could prevent tools from detecting possible parallelization, thus, an interactive
user environment is also important.

The design of CAPO had kept the above tactics in mind. CAPO uses the data dependence analysis
engine in CAPTools, exploits loop level parallelism in a program and inserts OpenMP directives
automatically. The schematic structure of CAPO is illustrated in Figure 1. CAPO takes a serial code as
input and first performs the data dependence analysis. User knowledge on certain input parameters in
the source code may be entered to assist this analysis for more accurate results. The process of
generating OpenMP directives is summarized in the following three stages.

1) Identify parallel loops and parallel regions. The loop-level analysis is carried out to classify loops as
parallel (including reduction), serial or potential pipeline based on the data dependence information.
Parallel loops to be distributed with work-sharing directives for parallel execution are identified by

U S I N G C A P O : C O M P U T E R - A I D E D P A R A L L E L I Z A T I O N P R O C E S S

CAPO User Manual 6

traversing the call graph of the program from the top downwards. Only outer-most parallel loops are
considered, partly due to the very limited support of multi-level parallelization in available OpenMP
compilers. Parallel regions are then formed around the distributed parallel loops. An attempt is also
made to identify and create parallel software pipelines.

2) Optimize loops and regions. This stage is mainly for reducing the overhead caused by the fork-
and-join and synchronization. A parallel region is first expanded as far as possible and may include
calls to subroutines that contain additional (orphaned) parallel loops. Regions are then merged together
if there is no violation of data usage in doing so. Region expansion is currently limited to within a
subroutine. Synchronization between loops in a parallel region is optimized by trying to prove if the
loops can be executed asynchronously.

3) Transform codes and insert
directives. Variables in common
blocks are analyzed for their
usage in all parallel regions in
order to identify threadprivate
common blocks. If a private
variable is used in a non-
threadprivate common block, the
variable is treated with a special
code transformation. A routine
needs to be duplicated if its usage
conflicts at different calling
points. By traversing the call
graph, OpenMP directives are
then added for identified parallel
regions and parallel loops with
variables properly listed. The
variable usage analysis is
performed at several points to
identify how variables are used
(e.g. private, shared, reduction,
etc.) in a loop or region. Such
analysis is required for the
identification of loop types, the
construction of parallel regions,
the treatment of private variables
in common blocks, and the
insertion of directives.

Intermediate results can be stored into or retrieved from a database. User assistance to the
parallelization process is possible through browsers implemented in CAPO (the Directives Browser)
and in CAPTools. The Directives Browser is designed to provide more interactive information from the
parallelization process, such as reasons why loops are parallel or serial, distributed or not distributed.
The user can concentrate on areas where potential improvements could be made, for example, by
removing false data dependences. This is a typical part of the iterative process of parallelization.

2.4. Data Dependence

To be able to use many of the facilities provided by CAPTools/CAPO it is important to understand
what a dependence is in terms of the source code for a program. The dependence analysis performed by
CAPTools builds a dependence graph where the nodes in the graph represent executable statements

Figure 1: Schematic flow chart of the CAPO architecture.

Serial Code

Dependence Analysis

Loop-level Analysis
Parallel Region

Formation

Loop and Region
Optimization

Directive Insertion
and Code Generation

Parallel Code

A
p

p
li

ca
ti

on
D

at
ab

as
e

Privatization for
Common Blocks

Routine Duplication

User
Knowledge

Browsers
User

Interaction

Variable
Usage

Analysis

U S I N G C A P O : C O M P U T E R - A I D E D P A R A L L E L I Z A T I O N P R O C E S S

CAPO User Manual 7

and the arcs of the graph represent relationships between statements. For the purposes of code
generation and parallelism, the arcs (dependences) show the required execution order of the connected
nodes (statements) to achieve semantically valid code. Dependence is the fundamental building block
for the tool-based parallelization. Any generated code, parallel or serial, that does not violate any of the
dependences is valid.

There are four basic types of dependences in a program source. For two statements, S1 preceding S2, in
a program, the execution order of S1 and S2 cannot be changed if any one of the following conditions
exists:

1) True dependence – data is written in S1 and read in S2.

For example,

S1: A(I) =
S2: = A(I)

present true dependence between source S1 and sink S2 caused by A(I) being assigned in S1 and
used in S2. Obviously the sink of the dependence cannot execute until the source has assigned the
required value.

2) Anti dependence – data is read in S1 and written in S2.

For example,

S1: = A(I)
S2: A(I) =

present anti dependence between source S1 and sink S2 caused by A(I) being reassigned in S2. S2
therefore cannot execute until after S1 has used the value that S2 will overwrite.

3) Output dependence – data is written in S1 and written again in S2.

For example,

S1: A(I) =
S2: A(I) =

present output dependence between source S1 and sink S2 caused by A(I) being reassigned in S2.
The order of assignment to the memory location must be maintained and the value in that location
after the execution of both statements must be that provided by the sink statement.

4) Control dependence – S2 is executed only if the condition in S1is satisfied.

For example,

S1: IF (A(I).EQ.5) THEN
S2: B(J) =

present control dependence between source S1 and sink S2. Obviously the execution of S2 depends
on the Boolean expression in S1 being calculated. The controlled statements (S2) cannot execute
until the controlling statement (S1) has executed.

True and control dependences are actual algorithmic dependences caused by information flow. Anti
and output dependences (jointly referred to as pseudo dependences) are caused by re-use of memory
locations and are not inherent to the code. Pseudo dependences may be removed by introducing
intermediate working variable(s).

Dependences can further be marked to indicate whether they exist between iterations of a particular
loop, or if they exist independent of the surrounding loops. Loop-related dependences directly affect
the parallelization of a loop.

U S I N G C A P O : C O M P U T E R - A I D E D P A R A L L E L I Z A T I O N P R O C E S S

CAPO User Manual 8

5) Loop-carried dependence – A dependence between two statements (or two instances of the same
statement) between iterations of the loop surrounding both statements. Dependence level is the
nesting level (or depth) of the carried loop in the current loop nest.

For example,

DO 10 J=2,NJ-1
DO 20 I=2,NI-1
A(I,J) = A(I,J-1)

20 CONTINUE
10 CONTINUE

each iteration of the J loop (except in this case the first iteration) uses a value of array A assigned in
the previous iteration of the J loop. This is a loop-carried true dependence on array A by the J loop
with a dependence level of 1.

6) Loop independent dependence – A dependence between two statements that exists during a single
iteration of all loops that surround both statements. Loop independent dependences are
marked with a level of infinity.

For example,

DO 10 J=2,NJ-1
DO 20 I=2,NI-1

S1: A(I,J) =
S2: = A(I,J)
20 CONTINUE
10 CONTINUE

the dependence on array A between source S1 and sink S2 is a loop independent dependence.

7) Loop entry/exit dependence – A true dependence between two statements, one being surrounded
by the loop and the other being outside the dynamic extent of the loop.

Entry or exit is determined by whether the source or the sink is outside the loop. A special case is a
loop-carried dependence with a dependence level less than the current loop nesting level. In this
case both statements (or two instances of the same statement) may be surrounded by the loop, but
dynamically one instance of the statements is outside the loop.

For example, for the I loop in the following code:

S1: A(2,1) =
DO 10 J=2,NJ-1
DO 20 I=2,NI-1

S2: A(I,J) = A(I,J-1)
20 CONTINUE
10 CONTINUE

S3: = A(2,2)

the true dependence between source S1 and sink S2 is a loop entry dependence and the one
between source S2 and sink S3 is a loop exit dependence. The true dependence between two
instances of statement S2 carried by the J loop at level 1 contributes to both loop entry and loop exit
dependences for the I loop.

When parallelization is considered loop entry/exit dependence determinates if a local variable
needs to be copied in upon the entry of a loop and copied out upon the exit of a loop.

By analogy to loop entry/exit dependence, dependences can also be marked to indicate whether they
exist upon the entry/exit of a routine. They are usually referred to as routine input/output dependences.

The last important concept related to dependence is encountered when the iteration space defined by
iterations of the loops in a loop nest is considered for setting up pipelines (see Section 4.1 for an
example of pipeline).

U S I N G C A P O : C O M P U T E R - A I D E D P A R A L L E L I Z A T I O N P R O C E S S

CAPO User Manual 9

8) Dependence vector – A vector formed by loop-carried dependences in the loop iteration space
that is defined by the loops of consideration in a loop nest.

For example,

DO 10 J=2,NJ
DO 20 I=2,NI
A(I,J) = A(I-1,J) + A(I,J-1)

20 CONTINUE
10 CONTINUE

the loop-carried dependence of A(I,J) on
A(I-1,J) forms a dependence vector of
[1,0], and the loop-carried dependence of
A(I,J) on A(I,J-1) forms a dependence
vector of [0,1]. The iteration space in this case
is defined by the iterations of the I and J loops,
as illustrated in Figure 2, and a dependence
vector is shown as an arrow in the figure.

Figure 2: Dependence vectors formed in the loop
iteration space.

2 NI

NJ

2

I

J
[0,1]

[1,0]

CAPO User Manual 10

3. Producing Parallel Code with CAPO

This section describes the usual steps a user will take to produce parallel code with CAPO. The
procedure follows the outline given in Figure 1. One can refer to the Tutorials and Appendix for more
information. It is also important to keep in mind that in order to get an efficient parallel code, user
interaction with the tools is almost always needed. The optimization process with the CAPO Directive
Browser is given in Section 4.

3.1. Prepare Serial FORTRAN Codes

CAPO currently works on FORTRAN 77 codes. A user can
either create a single file that contains all the subroutines or
provide a .list file that lists all the FORTRAN source files in
the program. Figure 3 shows an example of an “All.list”
file. Note that the source directory structure is preserved and
the file names can be used later in the code generation.

Any unresolved symbols can be defined using dummy
routines. For example, if the FORTRAN program calls C
subroutines, dummy FORTRAN routines could be supplied
to emulate the C functions even through these dummy
routines may be deleted later on from the generated parallel
code. This was a requirement of CAPTools prior to Version
2.1. The latest CAPTools provides interfaces to the dummy
routines automatically.

CAPTools does not accept source codes that contain pre-
processing directives. It is necessary to preprocess these files
before use in CAPTools. Although the toolkit tries to preserve
the original source form, these preprocessing directives will
be lost.

3.2. Make Dependence Analysis

Data dependence analysis is performed on the whole program, which is one of the key steps for the
directives generation. After source files are loaded into CAPTools, user knowledge may be entered, for
instance for the range of variables from the READ statements in the code. User supplied information
can help obtain more accurate data dependences, and thus, more efficient parallel code. An example is
illustrated in the following code:

read(*,*) isize
do 10 j=1,jm
do 10 i=1,im
ix = i + (j-1)*isize
A(ix) = A(ix) + B(i,j)

10 continue

The value of the parameter isize affects the loop parallelization. For the j loop, if isize > 0, no loop-
carried data dependence exists for variable A; if isize = 0, there are loop-carried data dependences for
variable A. The ambiguity in the isize value will prevent the j loop from being parallelized, i.e. a data
dependence on variable A will be assumed. The user could supply the information “isize > 0” to
improve the accuracy of the analysis.

lu.f
blts.f
buts.f
domain.f
erhs.f
error.f
exact.f
jacld.f
jacu.f
l2norm.f
pintgr.f
read_input.f
rhs.f
setbv.f
setcoeff.f
setiv.f
ssor.f
verify.f
../common/print_results.f
../common/timers.f
../common/wtime.f

Figure 3: An example of "All.list".

U S I N G C A P O : P R O D U C I N G P A R A L L E L C O D E

CAPO User Manual 11

Depending on the program size and the thoroughness of the analysis specified, the dependence analysis
process can take minutes, hours or days to complete. Once the analysis is finished, the user should save
the results to a database before proceeding further. The dependence analysis is the most CPU intensive
part of the parallelization process. Table 1 lists the CPU time spent on analyzing the NPB BT benchmark
on several machines. The analysis uses a single CPU. As one can see, the analysis time is roughly
proportional to the clock speed of a processor.

Table 1: CPU time spent by CAPTools on analyzing the NPB BT benchmark on several machines.

Machine Type OS Type CPU Time

Intel PIII, 500MHz
512MB RAM, 512KB Cache Linux 10.5 mins

Intel PII, 300MHz
512MB RAM, 512KB Cache

Linux 16.4 mins

Sun UltraSparcII, 360 MHz
1GB RAM, 16KB L1, 4MB L2 Solaris 15.0 mins

Sun UltraSparcII, 300 MHz
2GB RAM, 16KB L1, 4MB L2

Solaris 17.6 mins

SGI R5K, 150 MHz
128MB RAM, 32KB L1 IRIX 71.4 mins

SGI R10K, 195MHz
512MB RAM, 32KB L1, 1MB L2

IRIX 26.4 mins

SGI R12K, 300MHz
1GB RAM, 32KB L1, 2MB L2 IRIX 17.8 mins

3.3. Inspect Loops and Optimize Directive Generation

The parallelization strategy in CAPO is loop-based, thus an important next step is to inspect loops after
the dependence analysis is performed which may involve inspecting the dependences produced by
CAPTools. Quite often a dependence causing a loop to be serialized is due to insufficient knowledge of
value limits for some variables, as indicated in the previous section. The user can use the dependence
browser (DepGraph) to remove unnecessary dependences. However, the information in the DepGraph
window could be overwhelming for a novice user.

An alternative approach for inspecting the loops is to use the Directives Browser implemented in CAPO
(see Section 4 for details). The browser can be activated from the View→→→→Directives menu and is
designed to display information that was gathered from the directives analysis and is directly related to
the directives inserted. For instance, the browser provides more interactive information on the reasons
for loops to be parallel or serial and the relevant variables. The user can concentrate on loops that are
indicated as serial and the possible optimization of the dependence graph if needed. It is also possible to
enforce a user-defined loop type. After changes are made, the directive analysis is re-applied to take
into account these changes. This is an iterative process (see Figure 1). It is always a good idea to save
the incremental results to a database whenever a change is made before directives are actually inserted.

One should keep in mind that the CAPO/CAPTools parallelization relies on the static analysis of the
serial code. The dynamic information cannot be detected and applied by the toolkit. Thus, in most cases
a user-guided parallelization process is the only way to achieve a good quality parallel code.

U S I N G C A P O : P R O D U C I N G P A R A L L E L C O D E

CAPO User Manual 12

3.4. Generate Parallel Code with Directives

Once the dependence analysis is completed and the loop information is inspected, directives can
automatically be generated and inserted by selecting the “Save OpenMP Directive Code” option under
the File menu. The type of directive(s) is controlled by the CAPO parameters (as described in
Appendix 1), which are also selectable from the Setting box in the Directives Browser. One can elect to
use the default setup, which is to produce OpenMP directives with a full power analysis. Steps in the
generation of directives are logged to a file, by default to “code-output.log.” Contents of the log file
are described in Appendix 2.

3.5. Inspect the Generated Code and the Log Information

It is very important to inspect the generated
parallel code together with the log
information in the log file. In particular, one
should look into any shared variables, private
variables and I/O statements that are
potentially incorrectly listed. Warnings in the
last section (PASS 3) of the log file can
indicate places where potential problems
might exist. Of course, one can use other
tools (such as ASSURE from Kuck and
Associate [10]) to check for potential
problems in the parallel code.

Sometimes it is useful to find out what might
have been changed at different stages of code
parallelization. In the framework of CAPO,
one can compare codes created at three stages as shown in Figure 4: parsing, analyzing and
parallelizing. The codes can be simply compared with for example the Unix ‘diff’ command.
Comparison of ver1.f and ver2.f will review code sections that were deemed to be redundant and were
removed by the CAPTools dependence analysis process. Comparison of ver2.f and ver3.f will review
the change from serial to parallel defined by the directives inserted and other code transformations.

3.6. Compile and Run the Parallel Code

Once the parallel code is generated use an OpenMP compiler to compile the code. Typically a compiler
option is required to enable the directives. For example on the SGI Origin2000, the “-mp” option is
needed for the SGI MIPSpro compiler to compile codes with OpenMP features.

% f77 –o a.out –mp –O parallelcode.f

To run the code with 8 CPUs, do

% setenv OMP_NUM_THREADS 8
% ./a.out

Figure 4: Compare source codes at different stages.

serial code

parser

analyzer

parallelizer

ver1.f

ver2.f

ver3.f

CAPO User Manual 13

4. Interacting with the Directives Browser

As mentioned before although the dependence analysis carried out is very detailed, it can often contain
dependences that had to be assumed to exist. In these cases, user assistance can be used to improve the
quality of the generated OpenMP code. This is done by classifying the different types of loops that
generally exist in application codes and using the Directives Browser to inspect and interrogate all the
loops in turn. The Directives Browser is activated from the View menu of CAPO after CAPO finishes
the directive analysis (see Figure 5 for the main window of the browser). The browser displays loops
according to their types and provides more interactive information on the reasons why loops are
parallel or serial. The user can concentrate on loops that are indicated as serial (fully or covered, as
given below). The user can also enforce the classification of a selected loop by re-defining the loop type
or define the granularity threshold for a loop so that any loop below this level is not considered for
parallelization. Another feature of the browser is to provide the access for the user to manipulate the
dependence graph (in conjunction with the DepGraph Browser) and improve the quality of the
parallelization.

Figure 5: The Directives Browser main window.

U S I N G C A P O : I N T E R A C T I N G W I T H T H E D I R E C T I V E S B R O W S E R

CAPO User Manual 14

4.1. Loop Classification

The loops are identified in the browser for the following types:

i. Totally serial loops – These loops contain a loop-carried true data dependence that causes the
serialization of the loop i.e. data assigned in an iteration of the loop is used in a later iteration.
(Other possible reasons for a loop to be defined as serial include the presence of I/O or loop
exiting statements within the loop body). In addition, this loop type does not contain any nested
parallel loops and also is not contained within a parallel loop. The directive browser shows a list
of the variables and a textual explanation of why the loop is serial. However, the data
dependence(s) may have been assumed to exist and the user may be able to supplement the
dependence analyzer with additional information to prove that the data dependence(s) do not
exist. Alternatively, the user may wish to enforce the removal of a serializing data dependence,
again using the dependence browser.

ii. Covered serial loops – These are also serial loops containing a loop-carried true data dependence, so
they can be treated in a similar way to totally serial loops. However, this type of serial loop is
either nested within a parallel loop or contains parallel loops within it. In the latter case, if the
serial loop can be made parallel (see totally serial loops) then the parallelism can be defined at a
higher level and may therefore enhance the performance of the execution in parallel.

iii. Falsely serial loops – These loops are not serial due to a loop-carried true dependence. Instead, they
will need to execute in serial due to the existence of pseudo dependencies that represent memory
re-use as this needs to be considered when working within a globally addressable memory. The
directive and dependence browsers can be used together with any additional information the user
may wish to offer to re-examine if the variable(s) concerned can be privatized. In the process,
dependencies into or out of the loop are examined to test if the variable could be made PRIVATE,
or to re-examine if the loop carried pseudo dependencies are needed, in an attempt to allow the
loop to execute in parallel.

iv. Reduction loops – The analysis is used to determine if the loop body computations represent a
global reduction operation such as a MAX or summation. These loops provide a partial update of
the results by each thread followed by a global update to give the final reduction value.

v. Pipeline loops – This is a special class of serial loops with loop-carried true dependences. The use of
directive-based software pipelines exploits parallelism in this type of loops. Figure 6 shows an
example where OpenMP function calls are used to define the pipeline start-up before the J-loop
and the pipeline shutdown after the loop. The example is taken from a version of the NAS LU
benchmark. This is a similar strategy to that adopted for a software pipeline used in a distributed
memory parallelization with message passing. For comparison a software pipeline implementa-
tion using a high level message-passing library (CAPLib) is shown in the lower panel of Figure 6.

vi. Chosen parallel loops – These are the parallel loops at which the OMP DO construct is defined. These
loops may contain serial or parallel loops within their nesting but are not surrounded by other
parallel loops.

vii. Not chosen parallel loops - Also parallel loops, but these have not been selected for application to the
OMP DO directive. This is because these loops are surrounded by other parallel loops at a higher
nesting level. In general, the OpenMP compiler suppliers do not currently support nested
parallelism, therefore, even though parallelism exists at these lower levels, it is not currently
exploited.

The sub filter can be used together with the loop filter to control the finer selection of loop types.
Detailed explanation of these filters can be found in Appendix 3.2 and examples of using the loop filters
are given in the Tutorials.

U S I N G C A P O : I N T E R A C T I N G W I T H T H E D I R E C T I V E S B R O W S E R

CAPO User Manual 15

Figure 6: Implementation of a software pipeline for routine BLTS using (a) OpenMP (b) message passing.

4.2. Browsing Different Types of Loops

The accurate dependence analysis allows the algorithm to automatically generate efficient OpenMP
code in many cases. Experience has shown that this typically leaves a small proportion of cases that
require user interaction. For example, the use of workspace arrays is very common in application codes.
The value-based nature of the dependence analysis will often prove that no data is passed between
iterations of a loop, but the memory re-use (pseudo) dependences must however be set. This correctly
does not classify such loops as serial, however, the legal privatization of these arrays to allow parallel
execution requires that no data is passed into or out of these arrays from or to outside the loop, i.e. no
loop entry/exit dependence on these arrays (see Section 2.4).

Normally the user wants to go through the following loop types and use the WhyDirectives window to
find out the reason(s) for the setting of a particular loop type:

• Totally Serial->True Recursion
• Covered Serial->True Recursion
• Falsely Serial->Privatization

(a) lloop = jend-jst
if (lloop .gt. mthnum) lloop = mthnum
iam = omp_get_thread_num()
if (iam .gt. 0 .and. iam .le. lloop) then
neigh = iam - 1
do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)
end do
isync(neigh) = 0

!$OMP FLUSH(isync)
endif

!$OMP DO SCHEDULE(STATIC)
do j=jst,jend,1
do i=ist,iend,1

c forward elimination and back substitution for diag. block inversion
enddo

enddo
!$OMP END DO nowait

if (iam .lt. lloop) then
do while (isync(iam) .eq. 1)

!$OMP FLUSH(isync)
end do
isync(iam) = 1

!$OMP FLUSH(isync)
endif

(b) CALL CAP_RECEIVE(v(1,2,LOW-1,k),nx0*5-10,3,CAP_LEFT)
do j=MAX(jst,jst+LOW-2),MIN(jend,jst+HIGH-2),1
do i=ist,iend,1

c forward elimination and back substitution for diag. block inversion
enddo

enddo
CALL CAP_SEND(v(1,2,HIGH,k),nx0*5-10,3,CAP_RIGHT)

U S I N G C A P O : I N T E R A C T I N G W I T H T H E D I R E C T I V E S B R O W S E R

CAPO User Manual 16

• Chosen->CopyIn/Out

Figure 7: The WhyDirectives window for a falsely serial loop.

The WhyDirectives window (as shown in Figure 7) can be activated by clicking on the Why... button in
the Directives Browser window once a loop is selected. The window displays information on variables
that cause a loop to be so classified. The cause for a loop not to be parallel can come from several
sources, for example, loop-carried TRUE/ANTI/OUTPUT dependence, non-privatizable variables (re-
use of memory). If the user is sure that some of these dependences are false (mostly due to lack of input
information for the dependence analysis) and can be removed, the Dep-Graph browser can be used to
modify the dependence graph. A shortcut is provided in the WhyDirectives window where variables
can be selected from the variable-list boxes and the relevant dependences can be removed by clicking
the Remove button. The following relevant dependences (see Section 2.4 for an explanation of different
dependences) will be removed, based on the loop type and variable list type:

Loop Type List Type Dependence Type

True-dep. Loop-carried TRUE dependence
Anti-dep. Loop-carried ANTI dependence

Totally Serial

Output-dep. Loop-carried OUTPUT dependence
True-dep. Loop-carried TRUE dependence
Anti-dep. Loop-carried ANTI dependence

Covered Serial

Output-dep. Loop-carried OUTPUT dependence
Anti-dep. Loop-carried ANTI dependence
Output-dep. Loop-carried OUTPUT dependence

Falsely Serial

In/Out-dep. TRUE dependence from outside of the loop
Chosen Parallel CopyIn/Out TRUE dependence from outside of the loop

U S I N G C A P O : I N T E R A C T I N G W I T H T H E D I R E C T I V E S B R O W S E R

CAPO User Manual 17

Once a change to the dependence graph (either via the Dep-Graph browser or via the WhyDirectives
browser) is made, be sure to save the change to the database (File→→→→Save Database) and re-perform the
directive analysis (Update Directives... button).

4.3. Enforcing New Loop Type

A loop type as described in the previous section and defined by CAPO can be overridden by the user
with the LoopType dialog box which is activated from the New Type button (see Figure 7). Typically
this may occur when a loop is chosen for parallelization by CAPO but does not have proper granularity,
or the user may want to force it to be serial and let the tool choose another loop that is nested inside this
loop. Another possibility is when the user wants to enable parallelization for a loop that contains I/O
statements.

Currently the following four types can be enforced by the user:

Parallel - from parallel loop without granularity or with I/O statements
Serial - from parallel loop, including reduction
Reduction - from serial loop with loop-carried true dependence
Break - from any other loop types.

When a loop is enforced as the “Break” type, the loop will not be included in a parallel region. Only
the conversions as indicated are possible from the dialog box. Although loop types can also be
redefined from the user-defined loop file (see Appendix 1.3), use of the LoopType dialog box is safer.
However, one should keep in mind that changing the loop type manually could potentially lead to
incorrect results if the above rule is not carefully followed.

4.4. Routine Duplication

Routine duplication is performed after all the loop-level analyses and optimizations are done but before
directives are inserted. A routine may be duplicated if it causes usage conflicts at different calling
points. For example, if a routine contains parallel regions and is called both inside a parallel loop and
outside another parallel loop but still inside a parallel region, the routine is duplicated so that the copy
of the routine without directives is used inside the parallel loop and the second copy containing only
orphaned directives without “OMP PARALLEL” is used inside parallel regions but outside parallel
loops. Routine duplication is often used in a message-passing based parallelization to handle different
data distributions in the same routine.

There are two selectable types of routine duplication (see the Settings in Appendix 3) for a routine that
contains parallel regions in the dynamic extent of this routine:

• 'Loop' as the type for routine duplication if the routine is called both inside and outside
parallel loop(s).

• 'Region' as the default type for routine duplication if the routine is called inside parallel loop(s)
and inside parallel region(s) but outside parallel loop(s).

The first option removes any nesting of parallel regions. The second option allows nested parallel
regions in such a form that a parallel region can be nested inside a parallel loop but not inside a non-
worksharing section of a parallel region.

The RoutineDup browser (from View→→→→Directives→→→→RoutDup) is used for browsing routines that will
be duplicated. The browser will indicate those calls that are inside parallel loops and those that are
outside parallel loops. One may inspect the calls that are outside parallel loops for possible
improvements, for example, de-serializing any potential outside loop nests.

CAPO User Manual 18

5. Other Features

5.1. CAPO Parameters and Log Information

Parameters refer to inputs that the user can supply to control the behavior of directive generation in
CAPO. A list of all the parameters is given in Appendix 1. These parameters can be defined from a file,
environment variables, the Setting window in the Directives Browser, or the CAPO command interface.
All the parameters have default values. The Setting window from the Directives Browser is the most
straightforward way to change parameters. It allows the user to select the log information type, define
the directive type, set the loop granularity for parallelization, enable/disable the generation of the
THREADPRIVATE directive, etc. For example, if the Directive Type is set to No Directive, the generated
code will not contain directives and any associated transformations as indicated in the next section.

By default, the process of automatic insertion of directives is logged to the log-file “code-
output.log.” Information in this file may be examined after directives are added. There are three
main sections in the log file, as outlined in Appendix 2. Depending on the log-info type, different levels
of information detail may be logged. In general, the log-info type controls:

1) min  only minimum amount of information, such as WARNING and INFO messages,

2) std  information from min, plus summary for each routine and each region,

3) more  information from std, plus more detailed results for each loop and each region,

4) debug  information from more, plus additional debug information that are probably too
much for an ordinary user.

Warning messages in the log file should be carefully examined since they may indicate potential
problems in the generated parallel code.

5.2. Automatic Code Transformation and Optimization

CAPO performs the following code transformation and optimization automatically and logs the actions
into the log file.

• Removal of the end-of-loop synchronization (using the NOWAIT construct) if it is proved valid.
The function can be switched off from the parameter setting. Default is on.

• Loop nest interchange to improve cache performance. The array usage is analyzed against the
loop nesting order for possible misalignment. Loop transformation is performed to reduce
misalignment. The module is activated only when the O3 optimization is chosen. Default is O2.

• The ability to treat private variables with unknown size. A variable with unknown size is
usually declared as “(*)” (sometimes as “(1)”) for its last dimension in a subroutine. Use of
such a variable as PRIVATE in a parallel region would cause ambiguity in size declaration and
likely run-time error. In the current implementation, variable size is automatically detected
(back tracing and usage checking) and dimension adjustment is then performed. Default is on.

• Reduction of an array is transformed into local array updates plus a global update in a critical
section at the end. Default is on.

• Detection of reduction via an IF statement. The reduction is automatically transformed to local
updates and a global update in a critical section at the end. This type of reduction is indicated
as IMIN or IMAX in the Directives Browser. Default is on.

U S I N G C A P O : O T H E R F E A T U R E S

CAPO User Manual 19

5.3. Command Interface and the Batch Mode

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools
command interface. It provides a way to access the functionality of GUI components without starting
the GUI. It serves as a means to record actions (to a log file) as a result of any user GUI activities so that
these actions can be played back later. The commands in the command interface are usually recorded to
a log file or a command file with

capo –logfile capo_run.cmd

and played back with

capo [-batch] capo_run.cmd.

The second line with the [-batch] option can be used to start a CAPO session in a batch mode. This is
especially useful for the data dependence analysis since it is the most CPU intensive part and very little
user interaction is required once the analysis is started. Refer to Appendix 4 for a list of CAPO
commands and several useful CAPTools commands for the command interface.

5.4. Parallel I/O

Parallel I/O is not generally supported in CAPO. I/O is serialized by default, i.e., it is handled by the
master thread only. If any I/O is in the dynamic extent of a loop nest, the loop will be executed
sequentially. However, in some cases, one may want to exploit parallel I/O. For example in the
following code:

DO K=1,NZ
...
IF (V(K).LT.0.0) THEN
WRITE(*,*) ’Warning: Negative value at K=’, K

ENDIF
END DO

The WRITE statement prints a warning message only when a condition is reached. If the order of the
WRITE statement is not important, one may try to parallelize the loop.

Another commonly encountered case is that warning messages are printed inside subroutine calls while
data are read/written in the current scope of a loop nest. One may want to ignore the warning
messages inside subroutine calls but serialize loops containing I/O in the current scope.

The level of parallel I/O in CAPO is controlled by the parameter “CAPO_PIO”. If a value of “incall”
is given, CAPO will ignore any I/O inside subroutine calls when parallel loops are considered. Another
possible value is “write”, which allows any WRITE to stdout (UNIT=* or 6) inside parallel loops. This
can be used for the above example. Of course, the user can always enforce a user-defined loop type.
During the code generation warnings will be printed in the log file if I/O is encountered inside a
parallel region. One can examine these warnings for potential problems.

5.5. Mix of Message Passing and OpenMP

As pointed out in Section 2, CAPTools is designed to generate message-passing codes while CAPO is
used to create OpenMP codes. Mixing message passing (such as MPI) and OpenMP is possible in the
framework of CAPTools since CAPO is integrated into it. A commonly used hybrid model is to have
MPI for the coarse-grained parallelization and OpenMP for the fine-grained parallelization. Such a
parallelization model is very effective if an application can be divided into domains and different

U S I N G C A P O : O T H E R F E A T U R E S

CAPO User Manual 20

domains are only loosely coupled. MPI is used for inter-domain parallelism and OpenMP for intra-
domain parallelism.

Tutorial 5 gives an example of producing a mixed parallel code for the NAS BT benchmark. The tutorial
simply illustrates the capability of the tools to generate mixed codes. However it should be noted that
using a hybrid approach for parallelization is very application dependent.

CAPO User Manual 21

6. Case Studies

For completeness in this section we present case studies using CAPO to parallelize the NAS parallel
benchmarks and two computational fluid dynamics (CFD) codes well known in the aerospace field:
ARC3D and OVERFLOW. The parallelization process described in Section 3 was adopted. We mainly
present the results and discuss issues encountered in the parallelization. Most of the results have been
reported in [6].

In the case studies, we used an SGI workstation (R5K, 150MHz) and a Sun E10000 node to run CAPO.
The resulting OpenMP codes were tested on an SGI Origin2000 system, which consisted of 64 CPUs and
16 GB globally addressable memory. Each CPU in the system is a R10K 195 MHz processor with 32KB
primary data cache and 4MB secondary data cache. The SGI’s MIPSpro Fortran 77 compiler (7.2.1) was
used for compilation with the “–O3 –mp” flag.

6.1. The NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPBs) were designed to compare the performance of parallel computers
and are widely recognized as a standard indicator of computer performance. The NPB suite consists of
five kernels and three simulated CFD applications derived from important classes of aerophysics
applications. The five kernels mimic the computational core of five numerical methods used by CFD
applications. The simulated CFD applications reproduce much of the data movement and computation
found in full CFD codes. Details of the benchmark specifications can be found in [1] and [2].

In this study we used six benchmarks (LU, SP, BT, FT, MG and CG) from the sequential version of
NPB2.3 [2] with additional optimization described in [5]. Parallelization of the benchmarks with CAPO
is straightforward except for FT where additional user interaction was needed. User knowledge on the
grid size (≥ 6) was entered for the data dependence analysis of BT, SP and LU. In all cases, the
parallelization process for each benchmark took from tens of minutes up to one hour, most of the time
being spent in the data dependence analysis. The performance of CAPO generated codes is summarized
in Figure 8 together with comparison to other parallel versions of NPB: MPI from NPB2.3, hand-coded
OpenMP [5], and versions generated with the commercial tool SGI-PFA [14].

CAPO was able to locate effective parallelization at the outer-most loop level for the three application
benchmarks and automatically pipelined the SSOR algorithm in LU. As shown in Figure 8, the
performance of CAPO-BT, SP and LU is within 10% to the hand-coded OpenMP version and much
better than the results from SGI-PFA. The SGI-PFA curves represent results from the parallel version
generated by SGI-PFA without any change for SP and with user optimization for BT (see [14] for
details). The worse performance of SGI-PFA simply indicates the importance of accurate
interprocedural dependence analysis that usually cannot be emphasized in a compiler. It should be
pointed out that the sequential version used in the SGI-PFA study was not optimized, thus, the
sequential performance needs to be considered in the comparison. The hand-coded MPI versions scaled
better, especially for LU. We attribute the performance degradation in the directive implementation of
LU to less data locality and larger synchronization overhead in the 1-D pipeline used in the OpenMP
version as compared to the 2-D pipeline used in the MPI version.

The directive code generated by CAPO for MG performs 36% worse on 32 processors than the hand-
coded version, primarily due to an unparallelized loop in routine norm2u3. The loop contains two
reduction operations of different types. One of the reductions was expressed in an IF statement, which
was not detected by CAPO Version 1.0 (the IF reduction will automatically be detected by Version 1.1),
thus, the routine ran in serial. Although this routine takes only about 2% of the total execution time on a
single node, it translates into a large portion of the parallel execution on large number of processors, for
example, 40% on 32 processors. All the tested parallel versions of CG achieved similar performance.

U S I N G C A P O : C A S E S T U D I E S

CAPO User Manual 22

The basic loop structure for the Fast Fourier Transform (FFT) in one dimension in FT is as follows.

DO K=1,D3
DO J=1,D2
DO I=1,D1
Y(I) = X(I,J,K)

END DO
CALL CFFTZ(...,Y)
DO I=1,D1
X(I,J,K) = Y(I)

END DO
END DO

END DO

A slice of the 3-D data (X) is first copied to a 1-D work array (Y). The 1-D FFT routine CFFTZ is called to
work on Y. The returned result in Y is then copied back to the 3-D array (X). Due to the complicated
pattern of loop limits inside CFFTZ, CAPTools could not disprove the loop-carried true dependences on
the working array Y for loop K. These dependences were deleted using the DepGraph browser to
enable the analysis to identify that the K loop is a parallel loop.

The resulted parallel FT code gave a reasonable performance as indicated by the curve with filled circles
in Figure 8. It does not scale as well as the hand-coded versions (both in MPI and OpenMP), mainly due
to the unparallelized code section for the matrix creation which was artificially done with random
number generators. Restructuring the code section was done in the hand-coded version to parallelize
the matrix creation. Again, the SGI-PFA generated code performed worse of those compared.

6.2. ARC3D

ARC3D is a moderate-size CFD application. It solves Euler and Navier-Stokes equations in three
dimensions using a single rectilinear grid. ARC3D has a structure similar to NPB-SP but contains curve-
linear coordinates, turbulent models and more realistic boundary conditions. The Beam-Warming
algorithm is used to approximately factorize an implicit scheme of finite difference equations, which is
then solved in three directions alternatively.

5

102

2
3

5

103

2

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

BT SP LU

2
3
5

10

2
3
5

102

2
3

1 2 3 4 5 10 20 30

FT

1 2 3 4 5 10 20 30

Number of Processors

MG

1 2 3 4 5 10 20 30

CG

 MPI-hand
 OMP-hand
 CAPO
 SGI-PFA

Class A, Origin2000

Figure 8: Comparison of the OpenMP NPB generated by CAPO with other parallel versions:
MPI from NPB2.3, OpenMP by hand, and SGI-PFA.

U S I N G C A P O : C A S E S T U D I E S

CAPO User Manual 23

For generating the OpenMP parallel version of ARC3D, we used a serial code that was already
optimized for cache performance by hand [13]. The parallelization process with CAPO was
straightforward and OpenMP directives were inserted without further user interaction. The parallel
version was tested on the Origin2000 and the result for a 194x194x194-size problem is shown in the left
panel of Figure 9. The results from a hand-parallelized version with SGI multi-tasking directives (MT by
hand) [13] and a message-passing version generated by CAPTools (CAP MPI) [7] from the same serial
version are also included in the figure for comparison.

As one can see from the figure, the OpenMP version generated by CAPO is essentially the same as the
hand-coded version in performance. This is indicative of the accurate data dependence analysis and
sufficient parallelism that was exploited in the outer-most loop level. The MPI version is about 10%
worse than the directive-based versions. The MPI version uses extra buffers for communication and this
could contribute to the increase of execution time.

6.3. OVERFLOW

OVERFLOW is widely used for airflow simulation in the aerospace community. It solves compressible
Navier-Stokes equations with first-order implicit time scheme and exploits complicated turbulence
model and Chimera boundary condition in multiple zones. The code has been parallelized by hand [4]
with several approaches: PVM for zone-level parallelization only, MPI for both inter- and intra-zone
parallelization, multi-tasking directives, and multi-level parallelization. This code offers a good test case
for our tool not only because of its complexity but also its size (about 100K lines of FORTRAN 77).

In this study, we used the sequential version (1.8f) of OVERFLOW. CAPO took 25 hours on a Sun E10K
node to complete the data dependence analysis. A fair amount of effort was spent on pruning data
dependences that were placed due to lack of necessary knowledge during the analysis. An example of a
false dependence is illustrated in the following code segment:

NTMP2 = JD*KD*31
DO 100 L=LS,LE
CALL GETARX(NTMP2,TMP2,ITMP2)
CALL WORK(L,TMP2(ITMP2,1),TMP2(ITMP2,7),...)
CALL FREARX(NTMP2,TMP2,ITMP2)

100 CONTINUE

Inside the loop, the memory space
for an array TMP2 is first allocated
by GETARX. The working array is
then used in WORK and freed
afterwards. However, the data
analysis has reviewed that the loop
contains loop-carried true
dependences caused by variable
TMP2, thus, the loop can only be
executed in serial. The memory
allocation and de-allocation are
performed dynamically and cannot
be handled by CAPO. This kind of
false dependence can safely be
removed with the DepGraph
browser. Even so, CAPO provides
an easy way for the user to interact

20

30
40

60

100

200

300
400

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

1 2 3 4 6 810 20 30

 CAPO OMP
 MT by hand
 CAP MPI

ARC3D
194×194×194

0.4

0.6
0.8

1

2

3
4

6
8

10

1 2 3 4 6 810 20 30
Number of Processors

 CAPO OMP
 MT by hand
 MPI by hand

OVERFLOW
69×61×50

Figure 9: Comparison of execution times of CAPO generated parallel
codes with hand-coded parallel versions for two CFD applications:
ARC3D on the left and OVERFLOW on the right.

U S I N G C A P O : C A S E S T U D I E S

CAPO User Manual 24

with the parallelization process. The OpenMP version was generated within a day after the analysis was
completed and an additional few days were used to test the code.

The right panel of Figure 9 shows the execution time per time-iteration of the CAPO-OMP version
compared with the hand-coded MPI version and hand-coded directive (MT) version. All three versions
were running with a test case of size 69×61×50 (210K grid points) in single zone. Although the scaling is
not quite linear (when comparing to ARC3D), especially for more than 16 processors, the CAPO version
out-performed both hand-coded versions. The MPI version contains sizable extra codes [4] to handle
intra-zone data distributions and communications. It is not surprising that the overhead is unavoidably
large. However, the MPI version is catching up with the CAPO-OMP version on large number of
processors. On the other hand, further review has indicated that the multi-tasking version used a fairly
similar parallelization strategy as CAPO did, but in quite a few small routines the MT version did not
place any directives for the hope that the compiler (SGI-PFA in this case) would automatically
parallelize loops inside these routines. The performance number seemed to have indicated otherwise.

We also tested with a large problem of 1.5M grid points. The result was not included in the figure but
CAPO’s version has achieved 18-fold speedup on 32 processors of the Origin2000 (10 out of 32 for the
small test case).

Acknowledgements: The authors wish to thank Drs. Warren Smith and Mohammad Djomehri
from the NAS division at NASA Ames Research Center and Dr. Constantinos Ierotheou from the
University of Greenwich for patiently reading through the manuscript and giving their valuable
comments and suggestions. The work is supported by the Computational Aerospace Sciences (CAS)
project under the High Performance Computing and Communications (HPCC) program.

CAPO User Manual 25

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,” NAS
Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA, 1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS Parallel
Benchmarks 2.0,” NAS Technical Report RNR-95-020, NASA Ames Research Center, 1995. NPB2.3,
http://www.nas.nasa.gov/Software/NPB/.

[3] C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Leggett, “Computer Aided Parallelisation Tools
(CAPTools) – Conceptual Overview and Performance on the Parallelisation of Structured Mesh
Codes,” Parallel Computing, 22 (1996) 163-195.

[4] D.C. Jespersen, “Parallelism and OVERFLOW,” NAS Technical Report NAS-98-013, NASA Ames
Research Center, Moffett Field, CA, 1998.

[5] H. Jin, M. Frumkin and J. Yan., “The OpenMP Implementation of NAS Parallel Benchmarks and
Its Performance,” NAS Technical Report, NAS-99-011, NASA Ames Research Center, 1999.

[6] H. Jin, M. Frumkin and J. Yan., “Automatic Generation of OpenMP Directives and Its Application
to Computational Fluid Dynamics Codes,” in Proceedings of Third International Symposium on
High Performance Computing (ISHPC2000), Tokyo, Japan, October 16-18, 2000.

[7] H. Jin, M. Hribar and J. Yan, “Parallelization of ARC3D with Computer-Aided Tools,” NAS
Technical Report, NAS-98-005, NASA Ames Research Center, 1998.

[8] S.P. Johnson, M. Cross and M. Everett, “Exploitation of Symbolic Information In Interprocedural
Dependence Analysis,” Parallel Computing, 22, 197-226, 1996.

[9] S.P. Johnson, P.F. Leggett, C.S. Ierotheou, E.W. Evans, and M. Cross, “Computer Aided
Parallelisation Tools (CAPTools) – User Manual,” Parallel Processing Research Group, University
of Greenwich, London, UK, http://captools.gre.ac.uk/.

[10]Kuck and Associates, Inc., http://www.kai.com/.

[11]Message Passing Interface, http://www-unix.mcs.anl.gov/mpi.

[12]OpenMP Fortran/C Application Program Interface, http://www.openmp.org/.

[13] J. Taft, “Initial SGI Origin2000 Tests Show Promise for CFD Codes,” NAS News, July-August, page
1, 1997. (http://www.nas.nasa.gov/Pubs/NASnews/97/07/article01.html)

[14]A. Waheed and J. Yan, “Parallelization of NAS Benchmarks for Shared Memory Multiprocessors,"
in Proceedings of High Performance Computing and Networking (HPCN Europe '98),
Amsterdam, The Netherlands, April 21-23, 1998.

CAPO User Manual 26

TUTORIALS

Source codes for all the tutorials described in this manual are included in the CAPO distribution and
can also be obtained from site http://www.nas.nasa.gov/Tools/CAPO/. Refer to “Examples.txt”
included in the examples directory for additional information.

Contents

Tutorial 1. A Simple Jacobi Code 27

Tutorial 2. NPB LU-hp Removing False Dependences 28

Tutorial 3. NPB MG User-Defined Loop Type 32

Tutorial 4. A CFD Application TEAMKE1 36

Tutorial 5. Mix of Message-Passing and OpenMP 44

CAPO User Manual 27

Tutorial 1. A Simple Jacobi Code

This tutorial demonstrates the very basic operations you would follow to generate an OpenMP code
without little user intervention. The code (jacobi.f) has an initialization loop and an iteration loop. The
iteration loop computes new solutions by averaging two neighboring points and checks the maximum
residual.

Steps of parallelization:

1. Perform the data dependence analysis. In CAPO, click Load F77 Source in the File
menu. Select jacobi.f and click Load. In the Analyser window, select the Full option and click
Analyse. This will just take a few seconds.

2. Save to database. In the File menu, click Save database. Enter a filename for the database or
take the default name (jacobi_full.dbs) and click Save. It is always a good idea to save the
results from different stages of the code analysis.

3. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up quickly. Select the All Routines scope and browse
through all loop filters. You will notice that the Jacobi code contains one Reduction loop (DO 30
I=1,N), two Chosen (parallel) loops (DO 10 I=1,N and DO 20 I=2,N-1), and one Falsely
Serial loop (DO 50 I=1,N containing an I/O statement).

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (or take the default name, jacobi_omp.f) and click Save. If the directives analysis has
not been performed (via Step 3), it will automatically be performed before the parallel code is
generated. The log file, jacobi_omp.log, contains additional information for the parallelization
process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o jacobi_omp –O3 –r8 –mp jacobi_omp.f

To execute the parallel code with 2 threads, do

% setenv OMP_NUM_THREADS 2
% ./jacobi_omp
Enter the values of N and TOL ...
1000 1.0e-6

The output looks like

...
49.99968169151887
1166848 9.9999888192314756E-07

You can compare the result with a single thread run or a serial version run. You will notice the program
does not scale well, primarily due to little work inside each distributed loop.

CAPO User Manual 28

Tutorial 2. NPB LU-hp Removing False Dependences

This tutorial demonstrates the basic user interaction with CAPO: removing false dependences to
improve the quality of data dependence and directives analyses. False dependences usually arise from
insufficient knowledge of certain parameters (such as from READ statements or calculated at runtime)
during CAPTools data dependence analysis. With the Directives browser, the user can inspect the
results and remove these false dependences if needed.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
LU-hp, uses an SSOR algorithm to solve the Navier-Stokes equations in three dimensions. A hyper-
plane implementation of the SSOR algorithm is used in LU-hp. The code is split into many .f files. In
order to load the code to CAPO, we first create a list file “All.list” that contains names of all the .f files.

Steps of parallelization:

1. Load file and enter user knowledge. Click Load F77 Source in the File menu. Select
All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx0 and click Positive Nontrivial, see Figure T2-1 on next
page. Apply the same steps to variables ny0 and nz0. These three variables define the number
of grid points in each dimension. Making them positive nontrivial (> 5 in the current case)
improves the quality of data dependence analysis.

2. Perform the data dependence analysis. After the user knowledge is entered, in the
Analyser window select the Full option and click Analyse. On an Indy R5000 workstation, the
analysis process takes about 18 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database
(lu_hp_full.dbs) and click Save.

4. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Select the All Routines scope and browse
through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely. For
meanings of these loop types, refer to Section 3.2 in Appendix).

5. Remove false dependences. In the Directives browser window, select the Totally Serial
loop filter and the All Routines scope. There are four loops listed under this category. Choose
the first loop: blts:1/1/35: do n=1,np,1 and click the Why button. The WhyDirectives
window as shown in Figure T2-2 will be popped up. As indicated in the window, the
serialization of this loop is caused by loop-carried data dependences from two variables: v and
tv. After inspecting the loop, the user realizes that this loop performs calculation for all points
on a given hyper-plane (i+j+k=constant). Each point on one hyper-plane could be calculated
independently, thus in parallel. However, indirect indexing was used to access data elements
on the plane and these indices were calculated dynamically and not available at the data
dependence analysis stage. Conservative decisions were made to keep these data dependences
during the analysis. So, the user can safely remove these false dependences to enforce a parallel
loop: using either the DepGraph window (in CAPTools) or the WhyDirectives window here
(simpler). With the second method, select variable v and tv in the three lists (True, Anti and
Output), click the Remove button and click the Apply button to confirm the action. Apply the
same procedure to the second loop: buts:1/1/35: do n=1,np,1.

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 29

Figure T2-1: The READ Knowledge window for entering initial user knowledge.

In the Directives browser window, select loop filter Falsely Serial and sub-filter Privatization.
Two loops are listed in this category. Choose the first loop: jacld:1/1/160: do n=1,np,1
and click the Why button if the WhyDirectives window is not visible. A new set of variables is
shown in the window, Figure T2-3. By the same token as above, the user selects those variables
listed in the Output-dep list and applies Remove to delete the relevant loop-carried Output
dependences. The variables in the In/Out-dep list were not selected because they are indeed
used outside the current loop. If a variable is removed from the In/Out-dep list and kept in the
Output-dep list, the variable would be privatized, which is not what we want here. Use the same
procedure on the second loop: jacu:1/1/160: do n=1,np,1.

6. Save new database and re-perform the directives analysis. Once data dependences
are modified, it is wise to save the results to a new database. In the File menu, click Save
database. Enter a filename for the database (lu_full_prune.dbs) and click Save. To re-perform
the directives analysis with changes taking into account, click the Update Directives button in
the Directives main window and Update to confirm the action. After the update, you will
notice the four loops treated above are now listed in Chosen (parallel). CAPO automatically
recognizes five reduction loops, two of them being array reductions.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Choose the
Single Filename setting, enter a filename (lu_hp_omp.f) and click Save. The log file,
lu_hp_omp.log, contains additional information and statistics for the parallelization process.

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 30

Figure T2-2: The WhyDirectives window for a Totally Serial loop. It can be used to remove false dependences for
the selected variables.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o lu_hp_omp –O3 –mp lu_hp_omp.f

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./lu_hp_omp

The output (for a class-W problem on 195MHz O2K) looks like:

Programming Baseline for NPB - LU Benchmark

Size: 33x 33x 33
Iterations: 300
Time step 1
...

0.1161399311023E+02 0.1161399311023E+02 0.3074289103934E-13
Verification Successful

LU Benchmark Completed.
Class = W
Size = 33x 33x 33
Iterations = 300
Time in seconds = 52.74
Mop/s total = 342.43

T U T O R I A L 2 . N P B L U - H P R E M O V I N G F A L S E D E P E N D E N C E S

CAPO User Manual 31

Figure T2-3: The WhyDirectives window for a Falsely Serial loop. The loop-carried output dependences for
variables a,b,c,d are selected for removal.

The output from a single process execution looks like:

Programming Baseline for NPB - LU Benchmark

Size: 33x 33x 33
Iterations: 300
Time step 1
...

0.1161399311023E+02 0.1161399311023E+02 0.3227238810597E-13
Verification Successful

LU Benchmark Completed.
Class = W
Size = 33x 33x 33
Iterations = 300
Time in seconds = 155.97
Mop/s total = 115.80

We have a speedup of 2.96 on 4 CPUs for this particular problem. If the pipelined LU were used, the
performance would be better (speedup of 3.32 on 4 CPUs). A version of the LU benchmark using the
pipeline algorithm is included in directory LU. Parallelizing LU with CAPO is straightforward and
similar steps as for parallelizing the hyper-plane LU can be followed. The difference is that the user
does not even need to remove any false dependences when generating the OpenMP code (skip Steps 5
and 6). CAPO is able to automatically set up the parallel pipeline.

CAPO User Manual 32

Tutorial 3. NPB MG User-Defined Loop Type

This tutorial was included in Version 1.0 of CAPO to demonstrate how the user enforces loop type to
improve the performance. This kind of interaction is not very often and can be done either within or
outside CAPO. The outside interaction is often involved with direct change to the source code. In the
following we first show the steps of parallelization without any change and then illustrate two ways of
user manipulation to the source code.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
MG, uses the V-cycle multigrid algorithm to obtain an approximate solution to a discrete Poisson
problem in three dimensions. The norm of the solution is calculated in each iteration to check for
convergence. As was done in Tutorial 2, all the .f files are first listed in a single file: All.list.

Parallelization of the original code.

1. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
All.list and click the Load button. In the Analyser window select the Full option and click
Analyse. On a 450 MHz Sun workstation, the analysis process takes about 20 minutes.

2. Save to database. In the File menu, click Save database. Enter a filename for the database
(mg_full.dbs) and click Save.

3. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Choose scope All Routines and loop filter
Totally Serial and sub-filter True Recursion. Select loop: norm2u3:1/1/27: do i3=2,n3-1
and click the Why button. Figure T3-1 is what you will see afterwards. The loop nest (and two
others inside) contains an IF statement which prevents the loop being recognized as a
reduction loop over variable rnmu.1 In order to be a valid reduction statement for OpenMP, the
code needs to be modified (see Step 5). Without any change, this piece of code will be run in
sequential.

4. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg_omp.f) and click Save. The log file, mg_omp.log, contains additional information
and statistics for the parallelization process.

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o mg_omp –O3 –mp mg_omp.f

To execute the parallel code with 8 threads, do

% setenv OMP_NUM_THREADS 8
% ./mg_omp

The output (for a class-A problem on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark
...

1 Due to the improvement in Version 1.1 of CAPO, the IF-type reduction is now automatically recognized. The
described serial loops will no longer exist. But the concept of user interaction from this Tutorial is still valid.

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 33

VERIFICATION SUCCESSFUL
L2 Norm is 0.243336530907E-05
Error is 0.692805188218E-16

MG Benchmark Completed.
Class = A
Size = 256x256x256
Iterations = 4
Time in seconds = 6.65
Mop/s total = 585.42

A single-CPU run of this code took 39.29 seconds. We have a speedup of 5.91 on 8 CPUs for this
particular problem.

Figure T3-1: The window shows a serial loop in norm2u3, MG.

Further improvement to the code can be made by parallelizing the loop in routine norm2u3 (the
highlighted area in Figure T3-1). The operations inside the loop nest can be expressed as reductions
with slight code modification. There are two ways to achieve the goal: modifying the serial code and re-
performing the dependence analysis (Steps 5-7) or user enforcing loop type in the tool without re-
analysis (Steps 8-9).

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 34

Modification of the serial code.

5. Modify the serial code. The step involves directly modifying the serial code (mg.f) with an
editor before the analysis. In routine norm2u3, change the IF statement

if (a.gt.rnmu) rnmu = a

to a form that can be expressed with reduction
rnmu = dmax1(rnmu, a)

Save the new version to mg2.f and create a new list file ‘All2.list’ to include mg2.f.

6. Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
All2.list and click the Load button. In the Analyser window select the Full option and click
Analyse. Save the result to a database (mg2_full.dbs). Browse directives if you like (View →
Directives). You will notice the loop in routine norm2u3 is now recognized as reduction.

7. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg2_omp.f) and click Save. The log file, mg2_omp.log, contains additional
information and statistics for the parallelization process.

Now you can compile and run the parallel code as described after Step 9.

User enforced loop type.

8. Define a new loop type. From the File menu, load in the database “mg_full.dbs” from the
previous analysis. Perform Step 3. In the WhyDirectives window, click the New Type button.
Right after the Reduction setting is selected the Reduction Operator dialog box is shown up
(see Figure T3-2). Select variable “rnmu” and intrinsic function “max”, and push Apply in the
Reduction Operator dialog and in the Loop Type dialog. A new entry “R[max:rnmu]” is
added to file “userloop.par” in the current working directoy. This is to inform CAPO to treat
variable “rnmu” as a reduction variable besides other variables (such as “s”). Now in CAPO
click Update Directives to re-perform the directives analysis, which will take into account the
user-defined loop types from file “userloop.par.”

9. Save and change OpenMP code. In the File menu, click Save OpenMP Directives Code.
Enter a filename (mg2_omp.f) and click Save. We need to do one last change in the generated
OpenMP code: Use an editor, change in routine norm2u3

if (a.gt.rnmu) THEN

rnmu=a

ENDIF

to an “OpenMP-compliant” form
rnmu = dmax1(rnmu, a)

T U T O R I A L 3 . N P B M G U S E R - D E F I N E D L O O P T Y P E

CAPO User Manual 35

Figure T3-2: The Reduction Operator dialog after the Reduction setting is selected.

From either method, we should produce the same new parallel code (mg2_omp.f). Use the same process
after Step 4 to compile and run the new code. The output from a run with 8 CPUs (for a class-A problem
on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark
...
VERIFICATION SUCCESSFUL
L2 Norm is 0.243336530907E-05
Error is 0.694753363997E-16

MG Benchmark Completed.
Class = A
Size = 256x256x256
Iterations = 4
Time in seconds = 5.67
Mop/s total = 686.60

The new code took 39.12 seconds on 1 CPU and 5.67 seconds on 8 CPUs, a speedup of 6.90 and 14%
improvement over the first version.

CAPO User Manual 36

Tutorial 4. A CFD Application TEAMKE1

The sample code, teamke1, in this tutorial has been taken from one of the CAPTools’ tutorials with a
slight modification. This is a realistic application. It includes structures that may be encountered in
many scientific applications. The example illustrates an incremental approach to achieve good
performance with assistant from CAPO and other tools like SpeedShop (available on the Origin 2000
machine). These tools are used to pinpoint problematic code sections quickly so that the user can apply
necessary changes.

Parallelization of the original code: teamke1.f

1. Perform the data dependence analysis. Start CAPO, click Load F77 Source in the File
menu. Select teamke1.f and click the Load button. In the Analyser window select the Full
option and click Analyse. The analysis process takes only a few minutes.

2. Save to database. In the File menu, click Save Database. Enter a filename for the database
(teamke1_full.dbs) and click Save.

3. Perform the directives analysis. In the View menu, click Directives to perform the
directives analysis. The Directives browser will be popped up shortly. Choose the All Routines
scope and browse through different loop filters. You will notice there are a quite number of
Totally Serial loops (see Figure T4-1), which will limit the performance of this code. At this
point, we only look into more details of the loop nest in routine CALCP1. The rest of the loops
will be discussed in Step 5 and after.

Choose the loop “CALCP1:1/1/35: DO 100 I=2,NI,1” and click Why. The WhyDirectives
window indicates the loop was serialized due to loop-carried dependences for variable SU. The
DepGraph (activated from the right-mouse button Loop Menu over the selected loop) shows
level-1 and level-2 dependences from statement 50 to 52 to 55 (see Figure T4-1). In particular
the 52 → 55 dependence prevents even a pipeline being formed within the loop nests. In fact,
we realize the add operation for variable SU in statements 52 and 55 is commutative, thus, the
execution order of the two statements can be switched and the 52 → 55 dependence can be
removed.

In the DepGraph window, click the 52 → 55 dependence edge with the right-mouse button and
load the “Why Dependence?” window (see Figure T4-2). Apply the Remove This Dependence
button and confirm the action. Save to a new database if you like. Click Update Directives to
re-perform the directives analysis and a pipeline is automatically recognized in routine
CALCP1.

Loop types are summarized here:

25 Totally Serial loops
10 Reduction loops
1 Pipeline loop in routine CALCP1
45 Chosen (parallel) loops

4. Produce OpenMP code. Without additional change, in the File menu, click Save OpenMP
Directives Code. Enter a filename (teamke1_omp.f) and click Save.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 37

Figure T4-1: The Directives Browser window displaying Totally Serial loops in teamke1. The Loop Menu is used
to activate the DepGraph (shown as inset) for the selected loop.

Figure T4-2: The DepGraph Dependence Menu after clicking on a dependence edge.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 38

To compile the OpenMP code on the SGI Origin2000, do

% f77 –o teamke1_omp –O2 –mp teamke1_omp.f

or use the supplied Makefile

% make VERNO=1

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./teamke1_omp < inp.dat > teamke1_omp.out.4

Use the SpeedShop tool available on the Origin 2000 to profile the code. For 1 CPU:

% setenv OMP_NUM_THREADS 1
% ssrun -pcsamp ./teamke1_omp < inp.dat > teamke1_omp.out.1

A sampling file named as "teamke1_omp.pcsamp.m(pid)" will be created. Here "(pid)" is a proper
process id. Use the "prof" command to create the profile output:

% prof teamke1_omp teamke1_omp.pcsamp.m(pid) > teamke1_omp.prof.1

Follow the same procedure to obtain
profile on 4 CPUs. The profile outputs
for the key routines on 1 and 4 CPUs
are compared in Table T4-1. "ratio" is
1-CPU time over 4-CPU time, or the
speedup on 4 CPUs. The error of ratio is
calculated from the statistical sampling
error reported in the profile data. As we
can see, except for two routines
(calcp1 and props), the major
routines do not scale. The poor
performance correlates with the Totally
Serial loops indicated in Figure T4-1.
These loops were executed sequentially.
In order to improve the performance,
we need to investigate and find a way
to parallelize these loops.

Table T4-1: Comparison of profile results for the first parallel
version of teamke1. Time is given in seconds.

Function 1CPU 4CPUs ratio error

LISOLV 16.18 16.89 0.958 0.033

CALCTE 9.53 9.06 1.052 0.049

CALCV 8.95 7.86 1.139 0.056

CALCU 8.58 7.58 1.132 0.056

CALCED 8.10 7.71 1.051 0.053

CALCT 7.10 6.47 1.097 0.060

calcp1 4.78 1.59 3.006 0.275

CALCP2 4.11 4.03 1.020 0.071

props 0.48 0.16 3.000 0.866

init 0.25 0.15 1.667 0.544

PRINT 0.06 0.20 0.300 0.140

Total 80.83 74.21 1.089 0.018

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 39

Version 2 – Code modification without change to the basic algorithm:

5. Inspect code sections. Restart CAPO and load back teamke1_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope All Routines, loop filter Totally Serial and loop
"CALCTE:2/12/42: DO 100 J=2,NJ". Click the Why button and the WhyDirectives
window as shown in Figure T4-2 will be displayed. There are six variables with loop-carried
true dependences, five of which have a determinable dependence vector length as indicated by
"[1]". This is an indication of a potential pipeline loop if changes can be made to variable UN
and two other variables VE and SMPW presented in the Output-dep. variable list.

Figure T4-3: The WhyDirectives window for a Totally Serial loop in teamke1.

6. Change scalar assignments. Checking the code section in loop nests I and J, we realize
that the dependences on scalar variables UN and VE were caused by the reuse of the assigned
values from the previous J or I iteration in an IF statement. The dependences can be removed
if we recalculate both variables at each J or I iteration.

Start a text editor and load in teamke1.f. In subroutine CALCTE modify the assignment for UN
from

IF(J.NE.NJ)UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-
> U(I,J)-U(I-1,J)))

to
IF(J.NE.NJ)THEN
UN=0.5*(U(I,J)+U(I-1,J)+FY(J)*(U(I,J+1)+U(I-1,J+1)-

> U(I,J)-U(I-1,J)))
ELSE
UN=0.5*(U(I,J-1)+U(I-1,J-1)+FY(J-1)*(U(I,J)+U(I-1,J)-

> U(I,J-1)-U(I-1,J-1)))
ENDIF

and for VE from
IF(I.NE.NI)VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 40

> V(I,J)-V(I,J-1)))
to

IF(I.NE.NI)THEN
VE=0.5*(V(I,J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-

> V(I,J)-V(I,J-1)))
ELSE
VE=0.5*(V(I-1,J)+V(I-1,J-1)+FX(I-1)*(V(I,J)+V(I,J-1)-

> V(I-1,J)-V(I-1,J-1)))
ENDIF

Apply a similar modification to variables in three other routines. The changes are summarized:
Routine Loop Variable Description
CALCP2 DO 100 J=2,NJ SUS, SUW Recalculate at each
CALCTE DO 100 J=2,NJ VE, UN iteration
CALCU DO 100 J=2,NJ GAMN, DVDXN
CALCV DO 100 J=2,NJM1 GAME

7. Expand 1-D array to 2-D. Variable SMPW is a 1-D working array throughout the program. In
order to set up a pipeline of the J loop with the outer I loop, this array needs to be expanded to
two dimensional. As an example, in routine CALCTE, change the declaration of SMPW from 1-D
to 2-D, i.e. SMPW(NX) → SMPW(NX,NY). Then modify the following code section from

CP=AMAX1(0.0,(SMPW(J)+CW))
SMPW(J)=-CW-CS
SMPW(J-1)=SMPW(J-1)+CS

to
CP=AMAX1(0.0,(SMPW(I-1,J)+CW))
SMPW(I,J)=-CW-CS
SMPW(I,J-1)=SMPW(I,J-1)+CS

The initialization of SMPW is done in subroutine (entry) INIT. In this routine modify the
declaration from SMPW(NX) to SMPW(NX,NY) and the assignment from SMPW(J)=0.0 to
SMPW(I,J)=0.0.

Similar changes are made in several other places. The modifications on SMPW are summarized
here:

Routine Loop Description
CALCED DO 100 J=2,NJ Expand SMPW from 1-D to 2-D
CALCT DO 100 J=2,NJ Change declaration in the whole program
CALCTE DO 100 J=2,NJ
CALCU DO 100 J=2,NJ
CALCV DO 100 J=2,NJM1
INIT DO 951 J=1,NJ

All the modifications do not alter the basic algorithm, so the same run-time results should be
expected. Save the modified code to a new file: teamke2.f.

8. Perform code analysis. Restart CAPO and load teamke2.f. Perform the Full data
dependence analysis and save to teamke2_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the All Routines scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 25 to
13 with increase in the number of pipeline loops. Loop types are summarized here:

13 Totally Serial loops (mainly in routine LISOLV)
10 Reduction loops
7 Pipeline loops
45 Chosen (parallel) loops

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 41

9. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to
file teamke2_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the new parallel code are
summarized in Table T4-2. As one can see, the parallel performance of Version 2 has been improved in
almost all routines except in routine LISOLV. LISOLV still executes serially and affects overall
performance. The single CPU execution time increased slightly in comparison with the original version.
This is because the recalculation of scalar variables in the new code costs slightly more time.

Table T4-2: Comparison of profile results for the second parallel version. Time is given in seconds.

Function 1CPU 4CPUs ratio error

LISOLV 16.14 18.00 0. 897 0.031

calcte 9.89 3.19 3.100 0.200

calcv 9.28 2.92 3.178 0.213

calcu 8.82 2.83 3.117 0.213

calced 8.76 2.87 3.052 0.208

calct 7.79 2.39 3.259 0.241

calcp1 5.04 1.75 2.880 0.253

calcp2 4.06 1.11 3.658 0.392

props 0.53 0.20 2.650 0.695

init 0.28 0.13 2.154 0.723

PRINT 0.14 0.26 0.538 0.178

Total 83.77 46.67 1.795 0.033

Version 3 – Change of algorithm in LISOLV:

10. Inspect code sections. Restart CAPO and load back teamke2_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope All Routines, loop filter Totally Serial and loop
"LISOLV:2/2/18: DO 100 I=ISTART,NIM1". Click the right mouse button to activate the
Loop Menu. In the menu choose Dep Graph and the DepGraph window will show data
dependences that serialize the loop (see Figure T4-4 and the inset): variable PHI at level 2 (loop
I) and 3 (loop J) and variable A,C at level 3 (loop J). In loop I, variable PHI is used to calculate
A and C and gets updated at each I iteration.

11. Modify the algorithm. We can use a more explicit algorithm in the I loop: Variables A and C
are calculated for all the values of I before variable PHI is updated. The I loop then becomes
parallel. The impact of such a change is mainly on the convergence speed of the underline
algorithm. One may have to balance convergence rate and parallelization. In this case
parallelization seems to be more important since it improves overall code performance.

The modifications to the code involve expanding the dimensionality of A and C from 1-D to 2-D
and splitting the I loop into two parts: the first part calculates A and C from PHI and the second

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 42

part updates PHI. The modified code section is shown in Figure T4-4. Apply the same change to
loop "DO 1000 J=JSTART, NJM1".

Save the final code to teamke3.f

Figure T4-4: The Directive Browser window for Totally Serial loops in teamke2. The highlighted code section in
routine LISOLV is to be modified to a more explicit form.

Figure T4-5: The modified code section after loop I is split into two parts.

T U T O R I A L 4 . A C F D A P P L I C A T I O N T E A M K E 1

CAPO User Manual 43

12. Perform code analysis. Restart CAPO and load teamke3.f. Perform the Full data
dependence analysis and save to teamke3_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the All Routines scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 13 to
6 and these loops are in routines GEOM and GRID. Loop types are summarized here:

6 Totally Serial loops
10 Reduction loops
7 Pipeline loops
49 Chosen (parallel) loops

13. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to
file teamke3_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the final parallel code are
summarized in Table T4-3. As one can see, the parallel performance of Version 3 has been improved
over Version 2 and a reasonable speedup has been obtained. The single CPU execution time of routine
LISOLV increased about 40% in comparison with the previous version but the parallel execution time
decreased by a factor of 2.4 for 4 CPUs.

Table T4-3: Comparison of profile results for the third parallel version. Time is given in seconds.

Function 1CPU 4CPUs ratio error

lisolv 22.71 7.47 3.040 0.128

calcte 9.74 2.95 3.302 0.219

calcv 9.11 2.78 3.277 0.225

calced 8.89 2.55 3.486 0.248

calcu 8.74 2.64 3.311 0.232

calct 7.83 2.34 3.346 0.249

calcp1 4.87 1.80 2.706 0.236

calcp2 4.01 1.07 3.748 0.408

props 0.52 0.24 2.167 0.535

init 0.27 0.12 2.250 0.781

PRINT 0.05 0.37 0.135 0.064

Total 89.92 36.23 2.482 0.049

CAPO User Manual 44

Tutorial 5. Mix of Message-Passing and OpenMP

This tutorial demonstrates one way to generate a hybrid parallel code with CAPTools/CAPO. The
parallelization is done at two levels: message-passing (MP) at one level and OpenMP at another. The
example relies on the thread-safe feature introduced in MPI-2 and the success of execution depends on
the implementation of a thread-safe MPI-2 library. We need to emphasize that the hybrid parallelization
here is not the best way to achieve good performance for the currently selected code. We mainly like to
illustrate that it is possible to produce a hybrid parallel code with the tools.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
BT, uses an implicit scheme to solve the Navier-Stokes equations in three dimensions. Within one time
iteration the solver sweeps through each dimension successively. Each step has strong data
dependences in the swept direction, but is completely parallel in the other two directions. The multi-
level parallelization is achieved by first distributing the data in the J dimension for message passing
and then applying directives on loops working on the K dimension. Small modification to the generated
parallel code by hand is needed in order to work around an incompletion due to that the hybrid code
generation is not really supported by the current tools.

The sequential version of the source code is in directory BT-mix. In order to load the code to CAPO, we
list all the .f files in one file: All.list.

Parallelization with message-passing at the first level:

1. Load source and enter user knowledge. Click Load F77 Source in the File menu. Select
All.list and click the Load button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx and click Positive Nontrivial, see Figure T5-1 on next
page. Apply the same steps to variables ny and nz. These three variables define the number of
grid points in each dimension. Making them positive nontrivial improves the quality of data
dependence analysis in Step 2.

2. Perform the data dependence analysis. After the user knowledge is entered, in the
Analyser window select the Full option and click Analyse. On a Sun Ultra-4 workstation, the
analysis process took 12 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database
(bt_full.dbs) and click Save.

4. Partition data. Launch the Partitioner from the CAPTools main window. Choose routine
"add", array "u" and index "3" (see Figure T5-2) and click Generate Partition. This step creates a
data distribution for array "u" on the 3rd index (the J dimension) and CAPTools also partitions
automatically the relevant arrays throughout the program. Figure T5-3 shows the partitioning
window after the process is finished. You will notice that array "lhsb" was left untouched. The
next thing to do is to select this array, index 4 and perform another partitioning.

5. Save to database. Use the Save Database menu to save the partitioned data to bt_part_j.dbs.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 45

Figure T5-1: The READ Knowledge window for entering user knowledge and the Analyser window.

Figure T5-2: The Partitioner window for array partitioning: routine add, array u, index 3.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 46

Figure T5-3: Apply array partitioning on the second array: lhsb, index 4.

6. Remove unwanted partitions. If you use the result produced from Step 4 to generate
message-passing code, you would notice that CAPTools place quite a few communication calls
inside routine COMPUTE_RHS, which exchange boundary values of some of the working arrays
(such as qs, rho_i…) for the partitioned dimension. These boundary values, in fact, can be
calculated in the routine instead of being communicated from neighbors to improve the
performance. This kind of improvement can be achieved within CAPTools by removing
partitions on the relevant arrays (although it is not very obvious and intuitive). In the
Partitioner window, select routine "compute_rhs". Select "qs" in the Partitioned Array list
and click the Delete Partition button. Apply the same procedure to arrays: rho_i, square, us,
vs, and ws. Figure T5-4 is what you will see after this process from which partitions on six
arrays have been removed.

Click the Accept All Partitions button.

7. Generate masks and communications. Start the Code Generator from the CAPTools
main window. Choose 2 for Min Slabs Per Processor, which indicates at least 2 slabs in the
partitioned direction to be used for the execution and reduces number of communications calls
placed. Select Gather/Scatter for Communication Type. Click Generate Masks to start the
mask generation and Calc & Gen Comms to generate communications. See Figure T5-5.

At this point you could produce a pure message-passing program if you wish (the Generate &
Save Final Code button). But we move onto next step.

8. Save to database. Use the Save Database menu to save the communication data to
bt_comm_j.dbs.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 47

Figure T5-4: The Partitioner window after partitions on six arrays were deleted.

Figure T5-5: The Code Generator window for the final generation of message-passing code.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 48

Insertion of OpenMP directives at the second level:

9. Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Select the All Routines scope and browse
through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely).

10. Re-enforce new loop types. In the Directives browser window, select the All Routines
scope, the Falsely Serial loop filter and I/O Statement sub filter (Figure T5-6). There are two K
loops listed under this category. Choose the first loop: y_solve:8/1/302: do k=1,grid..
and click the Why button. The WhyDirectives window (see Figure T5-7) indicates that there
are four MP (Message-Passing) calls (as part of the parallel pipelines) inside the K loop, which
serialize the K loop. If nothing is done here, the inside I loop will be chosen for the second level
parallelization with directives, which will not give a good performance.

Figure T5-6: The Directives Browser window for the Falsely Serial and I/O Statement type.

In order to improve the performance, we can enforce a parallel type for the two K loops with an
assumption that the MP calls are thread-safe. This is possible within the context of MPI-2. To
define a new loop type, click the New Type button in the WhyDirectives window (Figure T5-
7). Select new type Parallel and push Apply. A new entry is now added to file userloop.par.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 49

Select the second K loop: y_solve:13/1/353: do k=1,grid.. and click the New Type
button. Again in the LoopType window choose new type Parallel and push Update. CAPO will
save the new entry to file userloop.par and re-perform the directives analysis with the new
loop types.

Figure T5-7: The WhyDirectives window for the selected loop and the LoopType window for defining a new loop
type.

11. Insert OpenMP directives. In the File menu, click Save OpenMP Directives Code. Enter a
filename (bt_cap_j_omp.f) and click Save. By now you will have the first version of a hybrid BT
code. The log file, bt_cap_j_omp.log, contains additional information and statistics for the
parallelization process. You will see warnings on "I/O or MP statements inside parallel region".
This is what we need to fix next.

Modification to the generated hybrid code:

12. Replace MP calls with thread-safe version. As mentioned before, the current tool does
not really support the generation of hybrid codes, but is merely used to assist such a process.
The message-passing (MP) calls (CAP_SEND, CAP_RECEIVE…) placed inside the generated
code by the tool are assumed to be used in a single-threaded environment. The supporting
library, CAPLIB, is designed to run under a single-threaded environment as well. So in order to
have the hybrid code working properly, we need to modify the message-passing calls inside
parallel regions so that they can work safely under a multi-threaded environment. To achieve
the goal, we will create a subset of the routines in CAPLIB to support multi-threading. These
routines contain an additional field "TAG" in the argument for use with a specific thread. A
sample implementation of the thread-safe MP routines used in this tutorial is included in file
caplib_thread.F.

So we want to make a final touch to the generated code: replace several message-passing calls
with the thread-safe version. Edit file bt_cap_j_omp.f with a text editor:

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 50

1) In subroutine Y_SOLVE, include the following two lines in the declaration

integer omp_get_thread_num, myid
external omp_get_thread_num

2) In subroutine Y_SOLVE, the third parallel region, change

!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k)
to

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,myid)

and add the following lines before "do k=1,grid_points(3)-2,1"

myid = omp_get_thread_num()
!$OMP DO

Now add a message tag to the four MP statements in the K loop by replacing

CALL CAP_RECEIVE(...)
with

CALL CAP_RECEIVE_TAG(...,2000+myid)
and

CALL CAP_SEND(...)
with

CALL CAP_SEND_TAG(...,2000+myid)

The tagged SEND and RECEIVE calls are from caplib_thread.F and the tag "2000+myid" is
added to ensure the point-to-point communication between two threads with the same thread
number. The offset "2000" in the tag is to avoid potential conflict with message tags internally
used by CAPLIB, but the choice of the value is a bit of arbitrary.

Lastly, change

!$OMP END PARALLEL DO
to

!$OMP END DO NOWAIT
!$OMP END PARALLEL

3) Apply the same changes as in 2) to the fifth parallel region in subroutine Y_SOLVE and save
the modification.

Compile and run the hybrid code.

In order to compile and run the hybrid code successfully, the following additions or installations are
required:

1) The CAPLIB library from the CAPTools distribution. CAPLIB can be downloaded from
http://captools.gre.ac.uk/.

2) A thread-safe extension to some of the routines in CAPLIB, which are supplied here in
caplib_thread.F for MPI. One of the main things in the file is a dummy MPI_INIT()
routine which just passes the call to MPI_INIT_THREAD(). The CAP_*_TAG routines are also
in this file.

3) A thread-safe implementation of MPI-2 library that supports MPI_INIT_THREAD in level
MPI_THREAD_MULTIPLE. Such an implementation is available from SGI's MIPSpro 7.3
compilers and MPT 1.4 toolkit.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 51

We will use the supplied Makefile to compile the hybrid code on the SGI Origin2000. Modify the
content of Makefile, in particular the value for CAPLIB. Then do

% make

which will create an executable "bt_cap_j_omp.1". To execute the parallel code with 3 MPI processes
and 3 threads per MPI process, do

% setenv OMP_NUM_THREADS 3
% mpirun -np 3 ./bt_cap_j_omp.1 -top pipe3

The output (for a class-W problem on 195MHz O2K) looks like:

Thread support on Rank 0 = 3, number of threads = 3
Thread support on Rank 1 = 3, number of threads = 3
Thread support on Rank 2 = 3, number of threads = 3
PID HOSTNAME MPI_PROCNAME UNIX_PID BIN_NAME
1 turing turing 35973 bt_cap_j_omp.1
2 turing turing 35974 bt_cap_j_omp.1
3 turing turing 35979 bt_cap_j_omp.1

Programming Baseline for NPB - BT Benchmark

Size: 24x 24x 24
Iterations: 200 dt: 0.000800
Time step 1
...

5 0.1018045837718E+02 0.1018045837718E+02 0.4575047075825E-12
Verification Successful

BT Benchmark Completed.
Class = W
Size = 24x 24x 24
Iterations = 200
Time in seconds = 11.66
Mop/s total = 662.12

The execution time from a single process run is 84.69 seconds, so we have a speedup of 7.3 on 9 CPUs.
You can run the code with different combinations of MPI processes and OpenMP threads, for example,
to run with 2 MPI processes and 8 threads per MPI (2x8 = 16 CPUs):

% setenv OMP_NUM_THREADS 8
% mpirun -np 2 ./bt_cap_j_omp.1 -top pipe2

Table T5-1 on next page contains a collection of results from runs on two SGI Origin2000s: 195 (CPU
type 195 MHz, 32Kb L1 and 4Mb L2 cache) and 300 (CPU type 300 MHz, 32Kb L1 and 8Mb L2 cache).
NP stands for number of MPI processes and NT is the number of threads per MPI process. For a given
number of CPUs, the hybrid code has a better performance when NP is close to NT. However, you also
notice that "8x2" performs better than "4x4" or to say MPI is more preferable in this case.

T U T O R I A L 5 . M I X O F M E S S A G E - P A S S I N G A N D O P E N M P

CAPO User Manual 52

Table T5-1: Execution time (in seconds) and Mop/s (million floating point operations per second) of the hybrid BT
code, obtained for the Class W (24x24x24) and with 1, 9 or 16 CPUs.

195 MHz Origin2000, 1 or 9 CPUs

NPxNT 1x9 3x3 9x1 1x1

Time 14.26 11.66 12.26 84.69

Mop/s 541.46 662.12 629.47 91.14

300 MHz Origin2000, 16 CPUs

NPxNT 1x16 2x8 4x4 8x2 16x1

Time 8.21 6.38 5.76 5.38 6.88

Mop/s 940.61 1210.05 1339.76 1433.53 1122.38

CAPO User Manual 53

APPENDIX

Contents

A1. Parameters for CAPO 54

A1.1. General 54

A1.2. The Parameter File 54

A1.3. Parameter Keys and Possible Values 54

A1.4. Parameters for Debugging Purpose 57

A1.5. Sample Parameter File 57

A2. Messages and Symbols in the Log File 59

A2.1. Classification of Loops 59

A2.2. Construction and Optimization of Parallel Regions 60

A2.3. Insertion of Directives in Routines 63

A2.4. Debug Information 65

A3. CAPO Graphical User Interface 68

A3.1. CAPTools Main Window 68

A3.2. Directives Browser Main Window 69

A3.3. Loop Filters and Sub-filters 70

A3.3.1. Loop Variable Filter Window 72

A3.4. WhyDirectives Window 73

A3.5. Routine Duplication Browser 78

A3.6. Parameter Setting Window 79

A3.7. User Loop Type Window 81

A3.8. Reduction Operator Dialog 81

A3.9. Updating Directives Dialog 82

A3.10. Variable Removal Confirmation Dialog 82

A3.11. Data Graph Window 83

A3.12. Hookups to CAPTools 84

A4. CAPO Command Interface 87

A4.1. Commands for the Command Interface 87

A4.2. Other CAPTools Commands Useful for CAPO 89

A4.3. An Example of "capo_run.cmd" 89

CAPO User Manual 54

A1. Parameters for CAPO

The following describes parameters available in Version 1.1.

A1.1. General

Parameters are referring to inputs that user can supply to control the behavior of directive generation in
CAPO. There are default settings for all the parameters (see Section A1.3). Parameters can be defined
from a file, environment variables, or the Setting box in the Directives Browser. Values from the
parameter file or environment variables supersede any defaults. Values from the parameter file
supersede environment variables. Changes from the Setting box (Section A3.6) in the Directives Browser
are applied at last. Parameter setting can also be done from the CAPO command interface. See Section
A4 for details.

A1.2. The Parameter File

The parameter filename can be defined via the environment variable CAPO_PAR. The default filename is
"capo-inp.par " in the current directory. An example of this file is given in Section A1.5.

Format of the parameter file:

'#' the sign starts a comment
'key value' the pair defines an entry

A1.3. Parameter Keys and Possible Values

ENV_VARIABLE KEY DEFAULT POSSIBLE VALUES
CAPO_PAR capo-inp.par
CAPO_LOG log-file on (off on stdout)
CAPO_LOGNAME log-file-name codeoutput.log
CAPO_LOGINFO log-info std (min std more debug)
CAPO_PLOOP loop-granularity 6 (0 1 2 ...)
CAPO_TYPE directive-type omp (omp sgi sgix no)
CAPO_REGION region-type default (loop bloop one join full)
CAPO_OPTIMIZE optimize-type o2 (off on o2 o3)
CAPO_USERLOOP user-loop-file user-loop.par
CAPO_DIRCLEAR directive-clear default-list (off on filename)
CAPO_TPRIV tpriv-directive on (off on)
CAPO_COMMENT comment-type f90 (f77 f90)
CAPO_USEPARTI use-parti-loop no (no yes)
CAPO_RDUPTYPE rdup-type region (loop region)
CAPO_UNKSIZE allow-unksize false (false true)
CAPO_PIO allow-pio no (no incall write noread

any)

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 55

Description of the parameters:

• “log-file ” type is one of

off  Logging to file is off, only minimum messages are printed on screen
on  Information are logged to the log-file
stdout  Information are printed to stdout (screen)

• “log-file-name ” defines the name for a log file. If no name is defined, CAPO will use the
output filename from the code generation to form a log filename. Contents of the log file are
described in Section A2.

• “log-info ” type is one of

min  Only minimum information are logged or printed
std  Print standard set of log information
more  Print more detailed log information, including region and loop numbers in the final

Fortran file
debug  Print debugging information, probably more than you want, including region and

loop numbers in the final Fortran file
• The loop granularity is based only on the loop iterations at this point. Future extension to

include profile information can easily be added.

• Currently supported directive types are

omp  Produce OpenMP directives (default)
sgi  Produce SGI native directives
sgix  Produce OpenMP directives with SGI extensions. Currently, only the 'NEST’

directive is supported
no  Do not insert directives in code generation (useful for comparison).

• Different region types

loop  consider only one loop for one region (no pipeline)
bloop  consider one block + one loop for one region (no pipeline)
one  consider one region (region not joined, no pipeline)
join  consider joined region (outer loop nesting, no pipeline)
full  consider full region (region joined and possible pipeline)

For SGI directives, only "loop" is allowed for the region type (region-type). The default region-
type is "loop" for SGI and "full" for OMP.

• Optimization type is intended for possible improvements to be applied, such as loop
granularity check, synchronization overhead reduction, and loop transformation. Currently an
attempt to reduce synchronization at end-of-loop is implemented. Other optimizations are less
defined and/or tested.

off  Do not do any optimization
on  Try to reduce synchronization at end-of-loop
o2  Use logical disprove (slow sometime) for affinity comparison
o3  Perform additional optimization (such as loop transformation) before loop analysis

and directive insertion.
• User-defined loop types are read from a file that can be defined via environment variable

CAPO_USERLOOPor "user-loop-file " entry in the parameter file. If a "userloop.par " file
exists in the current working directory, this file will be taken if the other two methods are not
used. The format of this file is:

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 56

starts comment
#RoutineName LoopNumber NewType
routine_name loop_count S|P|R|B[options]

Entries are specified line-by-line. “Routine_name ” is case insensitive. For a program without
the main-routine name defined, “MAIN” can be used to indicate the main routine.

"loop_count " is the loop number counted from the beginning of a given routine. A negative
"loop_count " indicates the loop (defined by -loop_count) will not be considered for
automatic loop transformation.

Currently the following new loop types are supported:

"S" for serial
"P" for parallel
"R" for reduction
"B" for break-type (e.g. so that a parallel region won't be formed around this loop).

The "R" type can optionally be attached with

"[OPR:VAR]" or "[OPR:VAR()]" list

to indicate the reduction operator and the reduction variable, no space in-between. The second
form indicates an array reduction.

• List of directives to be cleared can be read from a file or taken from the default list. The default
list contains the following:

"cdir$", /* Cray vector directive */
"cmic$", /* Cray autotasking directive */
"c$par", /* PCF (Parallel Computing Forum) directive */
"c$doacross", "c$&", /* SGI multiprocessing directive */
"c$ ", "c$\t",
"c$omp", /* OMP directive */
"c$sgi" /* SGI OMP extension */

The default setting is to use the above list. The 'clearing' action may be turned off by setting
CAPO_DIRCLEARto 'off '. Additional directives may be added to the default list by prefixing a
'+' in front of the filename for CAPO_DIRCLEAR.

A dirclear-list file contains simply a list of directives (keywords) to be considered. A keyword
should lead with one of ['C', '! ', '* ']. A '- ' sign can be added to the front of a keyword to indicate
the corresponding directive should not be cleared (i.e. keep its original form), otherwise, the
directive will be commented out (cleared).

• The THREADPRIVATEdirective will be generated by default. If the option is turned off via
CAPO_TPRIV(=off), CAPO will use an alternative method to treat private variables used in a
common block.

off  Use an alternative method to handle private variables
on  Try to produce THREADPRIVATEdirectives

• The comment type refers to the leading character to be used for directives. The 'C' character is
for the f77 type and the '! ' character is for the f90 type. Default is '! '.

• By default, if a loop is partitioned in a message-passing program, the loop will not be
considered for directives (CAPO_USEPARTI=no). This is equivalent to a two-level
parallelization. If a partitioned loop is intended for directives as well, CAPO_USEPARTIcan be
set to 'yes '. This would be a one-level parallelization with mixed type. The option is only

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 57

meaningful when CAPTools is first used to generate message-passing program and CAPO is
then applied to insert directives.

• Two types of routine duplication (RDUP) can be selected:

loop  as the type for RDUP if a routine is used both inside and outside parallel loop(s).
region  as the (default) type for RDUP if a routine is used inside a parallel loop and inside

parallel region but outside parallel loop.

The first option removes any nesting of parallel regions. The second option allows nested
parallel regions in such a form that a parallel region can be nested inside a parallel loop but not
inside a non-worksharing section of a parallel region.

• The environment variable CAPO_UNKSIZEcontrols how unknown-size private variable (USPV)
is treated. A unknown-size variable has its last dimension declared as "*" or "1" in a subroutine
and is in the routine argument list. By default, if an USPV is encountered, CAPO will take
effort to adjust the size of the unknown dimension. If the size cannot be adjusted, the
corresponding loop will be made serial. If CAPO_UNKSIZEis set to "true ", the loop with
USPV will not be made serial, instead, a warning will be printed so that the user can make
manual change later on.

• By default I/O statements are not allowed in the dynamic extent of parallel loops. However,
one can exploit certain degrees of parallel I/O with CAPO_PIO.

no  no I/O statements in the dynamic extent of a loop (default).
incall  no I/O in the current scope of a loop, but allowed inside subroutine calls.
write  allow "WRITE(*,*) ", i.e. write to the standard output.
noread  no READ, but allow any WRITE.
any  allow any type of I/O statements.

A1.4. Parameters for Debugging Purpose

The following parameters are only available from the Setting box (Section A3.6) in the Directives
browser. By default, all these parameters are enabled. The Setting box can be used to disable them for
debugging purpose.

Generate-NOWAIT  enable/disable the NOWAITdirective
Transform-Induction-Loop  enable/disable induction loop treatment
Handle-Array-Reduction  enable/disable array reduction
Remove-Old-Directives  enable/disable removing old directives
Apply-UserLoop-Type  enable/disable applying userloop types
Setup-Pipeline-Loop  enable/disable pipeline loop

A1.5. Sample Parameter File

env: CAPO_PAR
Parameters for CAPTools-based Parallelizer with OpenMP (CAPO)
They apply to version 1.1

env: CAPO_LOG
defines if log-information is wanted
log-file on (off on stdout)
env: CAPO_LOGNAME

A P P E N D I X : P A R A M E T E R S F O R C A P O

CAPO User Manual 58

defines log-file name when log-file = on
log-file-name (default: codeoutput.log)

env: CAPO_LOGINFO
defines type of information to be logged
log-info std (min std more debug)

env: CAPO_PLOOP
defines granularity (min. no. of iters.) for parallel loops
loop-granularity 6 (0 1 2 ...)

env: CAPO_TYPE
defines type of directives to be produced
directive-type omp (omp sgi sgix no)

env: CAPO_REGION
defines type of parallel regions to be considered
region-type full (loop bloop one join full)

env: CAPO_OPTIMIZE
defines optimization type for parallel regions
optimize-type o2 (off on o2 o3)

env: CAPO_USERLOOP
defines the file name for user-defined loop types
user-loop-file (default: user-loop.par)

env: CAPO_DIRCLEAR
defines the file name for directives to be cleared
directive-clear Default (off on filename)

env: CAPO_TPRIV
switches on/off the generation of THREADPRIVATE
tpriv-directive on (off on)

env: CAPO_COMMENT
chooses a comment type for directives
comment-type f90 (f77 f90)

env: CAPO_USEPARTI
uses partitioned loops for directives
use-parti-loop no (no yes)

env: CAPO_RDUPTYPE
defines routine duplication type
rdup-type region (loop region)

env: CAPO_UNKSIZE
allows unknown-size variables
allow-unksize false (false true)

env: CAPO_PIO
allows parallel I/O
allow-pio no (no incall write noread any)

CAPO User Manual 59

A2. Messages and Symbols in the Log File

By default, the process of automatic insertion of directives is logged to the log-file "code-
output.log ". Information in this file may be examined after directives are added. There are three
main sections in the log file, as outlined in the following subsections. Depending on the log-info type as
described in Section A1, different levels of information details may be logged. In general, the log-info
type controls:

1) min  only minimum amount of information, such as WARNING and INFO messages,

2) std  information from min , plus summary for each routine and each region,

3) more  information from std , plus more detailed results for each loop and each region,

4) debug  information from more , plus additional debug information that are probably too
much for an ordinary user.

In the case of "more " and "debug ", additional labels (region# and loop#) are added as comments for
parallel loops in the generated parallel code. Regions and loops are labeled within a given routine,
sequentially.

A2.1. Classification of Loops

The first section lists the analysis of loops in all routines from the dependence information. For a given
routine a loop is labeled with its sequence number, the group number and the loop-nesting level. The
group number is defined as a sequence number for a loop-nest group at a given nesting level. Loops are
classified as parallel, serial, or possible pipeline. For a parallel loop, it is further tested for granularity
and is indicated if a parallel directive is to be added, provided the loop is not nested inside another
parallel loop. For a serial loop, the reason of serialization as well as the first variable that causes the
loop to be serialized is given. The causes of loop serialization include loop-carried dependences (true,
anti and output), I/O statement inside, and breaking out of the loop. A pipeline loop is a serial loop
with only loop-carried true dependences and determinable dependence vectors (see Section 2.4 for
definition). The basic information for loops is as the following:

Routine: ROUTINE_NAME
Loop # (loop_variable), group #, level #: parallel/serial

TYPE? Reason for serial...

"TYPE?" is one of types from the loop type list:

"REDU", "NPAR", "PAR", "IO", "LVAR", "SER", "ANTI", "PIPE",
"BRK", "UPIPE", "PAREG", "INDU", "INPLP", "RDINP", "GRAN", "PARTI"

As an example, part of the analysis for three routines in NPB-LU is given here (with log_info set to
MORE).

Routine: BUTS
Loop 1 (J), group 1, level 1: parallel, granularity - ok

PAR-> directives to be added for the loop <1,1>
Loop 2 (I), group 1, level 2: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 3 (M), group 1, level 3: parallel, granularity - no
Loop 4 (J), group 2, level 1: serial

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 60

PIPE? true dependence, pipeline loop? dvector: V[0,0,-1,0]
Loop 5 (I), group 2, level 2: serial

PIPE? true dependence, pipeline loop? dvector: V[0,-1,0,0]
Loop 6 (M), group 2, level 3: parallel, granularity - no
Loop 7 (M), group 2, level 3: parallel, granularity - no
*** Total number of loops: 7, parallel: 5, serial: 2, directive: 1

Routine: JACU
Loop 1 (J), group 1, level 1: parallel, granularity - ok

PAR-> directives to be added for the loop <1,1>
Loop 2 (I), group 1, level 2: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
*** Total number of loops: 2, parallel: 2, serial: 0, directive: 1

...
Routine: SSOR

Loop 1 (I), group 1, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED

Loop 2 (I), group 2, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED

Loop 3 (ISTEP), group 3, level 1: serial
BRK? break out of the loop or comm-call inside the loop

Loop 4 (K), group 3, level 2: parallel, granularity - ok
PAR-> directives to be added for the loop <2,1>

Loop 5 (J), group 3, level 3: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop

Loop 6 (I), group 3, level 4: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop

Loop 7 (M), group 3, level 5: parallel, granularity - no
Loop 8 (K), group 3, level 2: serial

SER? loop carried true dependence: ELAPSED
Loop 9 (K), group 3, level 2: serial

SER? loop carried true dependence: ELAPSED
Loop 10 (K), group 3, level 2: parallel, granularity - ok

PAR-> directives to be added for the loop <2,2>
Loop 11 (J), group 3, level 3: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 12 (I), group 3, level 4: parallel, granularity - ok

INPLP? no directive, loop inside a parallel loop
Loop 13 (M), group 3, level 5: parallel, granularity - no
*** Total number of loops: 13, parallel: 8, serial: 5, directive: 2

>>>> Grand total: num_routines 25, num_loops 157
loops: parallel 145, serial 12, directive 30

The label for a parallel loop with directive to be added (PAR->) is given as <level,group > pairs. In
the case of a serial loop only one variable is listed for the cause of serialization. For a potential pipeline
loop, the dependence vector for the first related variable is given, as the case of V[0,0,-1,0] for loop
4 (J) in routine BUTS.

The user-defined loop types are applied after the loop classification. Therefore, it is user's responsibility
to ensure the correctness of user-supplied loop types.

A2.2. Construction and Optimization of Parallel Regions

This section contains first the summary from the pass-two analysis of all the routines in the outer-most
loop level to decide if directives need to be added in a routine. Routines are traversed on their call

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 61

sequences. A <yes > or <no> flag is marked for each analyzed routine to indicate the addition of
directives in the routine. A routine may need to be duplicated if it is called both inside and outside a
parallel loop and will contain directives in itself.

Routine: ROUTINE_NAME <yes/no/inploop/noploop>

<yes>  routine is added with directives for parallel loops
<no>  routine has no directives
<inploop>  routine is called inside a parallel loop
<noploop>  routine has no parallel loop, but may contain potential pipeline loops

A sample result from the analysis of NPB-LU looks like the following.

Routine: APPLU <yes>
Routine: READ_INPUT <no>
Routine: DOMAIN <no>
Routine: SETCOEFF <no>
Routine: SETBV <yes>
Routine: SETIV <yes>
Routine: ERHS <yes>
Routine: SSOR <yes>
Routine: TIMER_CLEAR <no>
Routine: JACLD <yes>
Routine: BLTS <yes>
Routine: JACU <yes>
Routine: BUTS <yes>
Routine: RHS <yes>
Routine: TIMER_START <no>
Routine: L2NORM <yes>
Routine: TIMER_STOP <no>
Routine: ELAPSED_TIME <no>
Routine: WTIME <no>
Routine: ERROR <yes>
Routine: EXACT <no>
Routine: PINTGR <yes>
Routine: VERIFY <no>
Routine: PRINT_RESULTS <no>
Routine: TIMER_READ <no>
>>> Total routines: 25, checked: 24, with directives: 13

in/outside ploop: 0, in/with ploop: 0, no ploop: 12
Total directive loops: 30, effective: 30, in ploop: 0

The last line of the statistics indicates how many loops can be put with directives, how many of them
are really added with directives, and how many of them are nested inside other loops with directives.

Next is to construct parallel regions based on the loop information. A parallel region includes at least
one parallel loop or pipeline loop with possible basic blocks in the beginning of the loop. No nested
parallel loops are considered at this point. Two neighboring regions can be joined together if no codes
other than comments or nops (such as continue) exist between the two regions. Individual regions
are labeled sequentially within a routine. For each region a number is included in () to indicate the end
(or last) region of a joined area of regions. For disjointed regions, the end region is the same as the
region itself. Additional information included for a region are: loops in the region and type of the
region. Regions are also summarized for a routine as “region-type-summary .”

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 62

Region-type:
one ploop  containing exactly one parallel loop (no pipeline)
+prev-block  one parallel loop plus any preceded basic blocks
sub ploop  one or more parallel loops nested at different levels
pipeline  potential pipeline
<default>  region with joined neighbors

Region-type-summary:
DEFAULT  routine contains normal parallel regions
PIPE  routine is part of a pipeline region
UPIPE  routine contains potential pipeline regions

Sample outputs from the analysis of NPB-LU:

Region-in-Routine: BUTS
region-type-summary: UPIPE
Parallel region 1 (2): loops [1-3]
Parallel region 2 (2): loops [4-7]
*** Total number of regions: 2, joined regions: 1

Region-in-Routine: JACU
region-type-summary: DEFAULT
Parallel region 1 (1): loops [1-2] one ploop
*** Total number of regions: 1, joined regions: 1

Region-in-Routine: SSOR
region-type-summary: DEFAULT
Parallel region 1 (1): loops [4-7] one ploop
Parallel region 2 (2): loops [10-13] one ploop
*** Total number of regions: 2, joined regions: 2

Once the initial regions are determined, routines are then checked for possible pipeline regions across
routines. If such a region is identified, the pipeline-loop limit is checked against all other parallel loops
in the same pipeline region for alignment. If a discrepancy is found, a message will be printed out as
either “not the same limit” or “low-high limit swapped.” In the first case, the suggested pipeline
operation may produce incorrect run-time result and further check of this generated code is needed. In
the second case CAPO automatically swaps the loop limit to ensure the consistence. If pipeline loops
are not desirable, set the environment variable CAPO_REGIONto “join .”

For LU, routines BUTSand JACU were identified to be part of a pipeline region in routine SSORand
information was generated as follows.

Region-in-Routine: BUTS
region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JEND,JST,-1 (BUTS)

same limit
Region-in-Routine: JACU

region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JST,JEND,1 (JACU)

low-high limit swapped!
Region-in-Routine: SSOR

region-type-summary: DEFAULT
Parallel region 1 (1): loops [4-7] one ploop

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 63

Parallel region 2 (2): loops [8-8] pipeline
Parallel region 3 (3): loops [9-9] pipeline
Parallel region 4 (4): loops [10-13] one ploop
*** Total number of regions: 4, joined regions: 4

>>>> Grand total: routines 25, regions 34, joined regions 26

Parallel regions are further optimized for removal of end-of-loop synchronization (use the 'NOWAIT'
construct). Although more conservative approach is taken, careful examination of NOWAITis still
needed. For example, one should pay attention to the WARNING messages on “EndLoop-Sync
required/re-enforced.” If any problem occurs, one can always switch the optimization off (setenv
CAPO_OPTIMIZE off).

For LU, this is the summary after region optimization:

>>>> Total number of syncs removed: 7, in 4 routines (13 checked)

A2.3. Insertion of Directives in Routines

There are four functions performed in this stage:

• clearing any old directives if CAPO_DIRCLEARis not off (Section A1.3),

• searching for threadprivate common blocks and inserting the THREADPRIVATEdirective if
CAPO_TPRIVis not off,

• duplicating routines if needed, and

• inserting region/loop-level directives.

Information resulted from these four actions are not fed back to the Directives Browser except for
presented as directives in the source code. Thus, once directives are inserted, the Directives Browser
should not be used to do further changes.

A threadprivate common block is the one that have all its variables used as private (including copyin)
for all the parallel regions in the whole program. It means even a single instance of a non-private usage
of a variable can prevent the common block from becoming threadprivate. In the debug mode, causes of
a common block being determined as threadprivate or shared can be examined (see Section A2.4 for
details). Normally messages are printed for identified threadprivate common blocks and routines that
contain them. An example is given here.

T_PRIV common blocks:
-/WORK_1D/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE

NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

-/WORK_LHS/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE
NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

>>> THREADPRIVATE directive added for 2 common blocks in 18 routines

Warnings may be printed for those common blocks that may potentially be threadprivate:

WARNING! SSOR... region 4, loop 8

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 64

/CJAC/ Type conflict: old SHARED, new PRIV - use SHARED

It indicates that in routine SSORall variables in common block /CJAC/ are used as private in region 4,
but the common block is shared in other places. One can trace further for where the common block is
shared in the debug mode.

Directives are added by annotating the call graph and using the parallel region information obtained in
A2.2. The call paths are printed as the insertion is progressing. Any routine is only visited one time.

Routine: APPLU
Routine: APPLU->SETCOEFF
Routine: APPLU
Routine: APPLU->SETBV
Routine: APPLU
Routine: APPLU->SETIV
Routine: APPLU
Routine: APPLU->ERHS
Routine: APPLU
Routine: APPLU->SSOR
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR->RHS->TIMER_START
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME->WTIME
Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME
Routine: APPLU->SSOR->RHS->TIMER_START
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR->RHS->TIMER_STOP
Routine: APPLU->SSOR->RHS
Routine: APPLU->SSOR
Routine: APPLU->SSOR->L2NORM
INFO! Array reduction variable replaced with local critical in region 1 -

SUM() --> SUM_CAP1()
Routine: APPLU->SSOR
Routine: APPLU->SSOR->JACLD
Routine: APPLU->SSOR
Routine: APPLU->SSOR->BLTS
Routine: APPLU->SSOR
WARNING! Potential memory conflict for shared variable in region <2,1> -
ELAPSED
Routine: APPLU->SSOR->JACU
Routine: APPLU->SSOR
Routine: APPLU->SSOR->BUTS
Routine: APPLU->SSOR
WARNING! Potential memory conflict for shared variable in region <3,1> -
ELAPSED
Routine: APPLU
Routine: APPLU->ERROR
INFO! Array reduction variable replaced with local critical in region 1 -

ERRNM() --> ERRNM_CAP1()
Routine: APPLU
Routine: APPLU->PINTGR
Routine: APPLU
Routine: APPLU->VERIFY
Routine: APPLU

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 65

WARNINGs for “...variable used after a parallel region,” “potential memory conflict,” and INFOs on
the changes made to routine arguments should be examined carefully. These are just warnings, may or
may not cause any programming errors. The warnings are the cases where CAPO are uncertain of
decision making and user needs to inspect the generated code at the pointed places for verification. The
parallel region is labeled as <region_number, parallel_loop_number > pairs in the call path
right preceding the warning message.

Meanings of keywords in the WARNING message:

"variable"  a variable used in the current routine scope
"common-variable"  a variable used outside the current scope, e.g. through COMMON

blocks or SAVE statements in a subroutine
"Shared"  variable shared in the current region
"Plocal"  potential private variable in the current region
"Control"  variable with multiple control paths, i.e. variable could be updated

either inside or outside the current region
"I/O statement"  routine called inside a parallel region contains i/o

(OPEN,READ,WRITE,CLOSE) statements
"STOP statement"  routine called inside a parallel region contains STOP/PAUSE

statements
"Potential memory conflict"  for shared variable that can cause memory conflict in a parallel

region

If a private variable in a parallel region is updated via a COMMONblock in a subroutine, CAPO tries to
privatize such a variable by adding it to the subroutine's argument list and renaming the original
variable in the COMMONblock of the subroutine. CAPO will generate the following INFO messages in
this process:

New argument () added to CALL OTHER_ROUTINE():# in ROUTINE_NAME
New symbol () added to the argument list of ROUTINE_NAME
Common block /cblk/ duplicated for ROUTINE_NAME

CAPO performs a code transformation automatically for a reduction variable that is an array element.
The corresponding message is like:

Array reduction variable replaced with scalar in region # -
OLD_ARRAY_ELEMENT --> NEW_SCALAR_VARIABLE

A2.4. Debug Information

More information will be logged if CAPO_LOGINFOis set to “debug .” These are useful for debugging
CAPO. Some of the information are included here for reference only.

• UserLoop information for user-defined loop types

Userloop: Defined loop # in routine ROUTINENAME - newtype

“newtype ” is one of (S, P, R, B) as mentioned in Section A1.3.

• List of old directives to be cleared

• Summary of loop type with list of all dependence vector deltas for pipeline loops

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 66

• Three tests during region formation

Mem-Conflict check for region #R, loops #L-#L...
Conflict variables: <var,var...>

Shared-Array check for region #R, loops #L-#L...Assigned <Symbol>
IO-Statement check for region #R, loops #L-#L...

I/O or Reduction in routine <RoutineName>

• List of symbols and types in each region

TYPE
Private  Local (privatizable) variable
Reduction  Scalar reduction variable
ArrayReduction  Array reduction variable
Shared  Shared variable
LastPrivate  Usage in and after the region
FirstPrivate  Usage in and before the region
CopyInOut  Shared but no or no proof of loop-variable dependence
ThreadPrivate  Used in a threadprivate common block
UnknownType  Type not defined yet

CONTROL
No-Control  Symbol not in a control dependence
Control-Dep  Symbol in a control dependence

SCOPE
In-Scope  Symbol defined in the current routine
Not-in-Scope  Symbol not defined in the current routine (defined via

common block or save statement)
Not-in-Use  Symbol passed into a subroutine but not used in the

subroutine

DTYPE:DEPTH (printed in [.:.])
IO -1, Routine Input/Output
NT 0, Non-exact True
NA 1, Non-exact Anti
NO 2, Non-exact Output
ET 3, Exact True
EA 4, Exact Anti
EO 5, Exact Output
CT 6, Control
UN 7, Unknown type
Depth = 0 for loop-independent dependence

• List of routine call types, indicating the usage of a routine inside/outside parallel
regions/loops. Five bits are used:

bit1 [0x01] called outside parallel region
bit2 [0x02] called inside paregion but outside parallel loop
bit3 [0x04] called inside parallel loop
bit4 [0x08] called outside parallel loop (= bit1 | bit2)
bit5 [0x10] called inside parallel region

A P P E N D I X : M E S S A G E S A N D S Y M B O L S I N T H E L O G F I L E

CAPO User Manual 67

• Information on updating duplicated routines

Replace call to DROUTINE with CAP_DROUTINE in ROUTINE
Removed ROUTINE from the calledby list of DROUTINE
Added ROUTINE to the calledby list of CAP_DROUTINE

• List of symbols and affine expressions for testing loop limits (such as in the removal of end-of-
loop synchronizations)

HOME (LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [A1:INDX,A2:INDX..]
(LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [B1:INDX,B2:INDX..]

OTHER (NONLOOP-EXPR, #hits) [C1:INDX,C2:INDX..]
(NONLOOP-EXPR, #hits) [D1:INDX,D2:INDX..]

Here <EXPR> is a symbolic expression, A,B,C,D are array names, INDX is the relevant array
index. The lists are for both source and sink.

• Summary of fields associated with the ploopinfo data struct, mainly for development purpose.

Loop Lvar D/L Type G WP IP Nest Flag
Routine: ROUTINE_NAME

var ?/? TYPE? ? ? ? n/cn [321]

'Loop'  the loop number in a routine
'Lvar'  the loop variable name
'D'  the nesting level of the outermost DO loop containing this loop
'L'  the nesting level of the loop
'Type'  one of type strings given in Section A2.1
'G'  the loop granularity flag (internal info only)
'WP'  '1' containing parallel loop, '0' without parallel loop
'IP'  '1' inside parallel loop, '0' not inside parallel loop
'n'  this loop nest flag (containing nested parallel loop)
'cn'  child loop nest flag (part of nested parallel loops)
'Flag'  three bits for internal usage only

• Symbols and their types in common blocks (for testing threadprivate). Meanings of symbol
types:

[U]  Unset
[P]  Private
[R]  Reduction
[A]  ArrayReduction
[S]  Shared (RW)
[s]  Shared (Readonly)
[L]  LastPrivate
[F]  FirstPrivate
[C]  CopyInOut

• Methods used in determining the declaration size of unknown-size variables

[NOT]IDENTICAL SIZE, method 1 (caller declaration) used
MAX(e1,...), MIN(e1,...), method 2|3 (access range in routine) used
NO method - variable NOT safe - <var>

CAPO User Manual 68

A3. CAPO Graphical User Interface

CAPO is currently integrated into CAPTools as a component to generate OpenMP directives. For
CAPO-enabled CAPTools, additional items have been added to the File, View and Edit menus of the
CAPTools main window to access the CAPO graphical user interface (GUI).

The CAPO GUI is also referred to as the Directives Browser. It provides an easy way for user to access
information generated during the directives analysis and insertion. The browser consists of several
information windows and dialog boxes as given in the following sections. It also provides hookups to
the CAPTools GUI tools, such as DepGraph browser, Variable Definition browser, etc., so that one can
easily navigate and interact with the parallelization process.

A3.1. CAPTools Main Window

This is the main GUI window the user will see after CAPO/CAPTools is started. The CAPO GUI (the
Directives Browser) is started from the View (Directives) menu after a source file or a database file is
loaded from the File menu. A summary of CAPO hookups to CAPTools is given in Section A3.12.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 69

A3.2. Directives Browser Main Window

The main window of the Directives browser is activated by View–>Directives… from the CAPTools
main window (see Sections A3.1 and A3.12) after a source or database is loaded in. It presents
information from the first two phases of the directives analysis (before directives are added). It is
organized around loop types and is an entry point for other browser windows, such as WhyDirectives
and RoutineDuplication. Once directives are generated (via Save OpenMP Directives Code), the
Directives browser should not be used to do further changes.

Scope [setting]: selects one routine or all routines for loop listing.

Routines [list]: a list of routines that can be selected for loop listing.

Loops [list]: a list of loops under the selected routine/loop filters. To activate the WhyDirectives
window through the Why… button, a loop needs to be selected.

Loop Filter [list]: provides a way to focus on a particular type of loops, mainly serial or parallel, as
described in details in Section A3.3.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 70

Sub [list]: sub-loop filter to be combined with the loop filter to provide finer control of loop selection.

More Filter [button]: activates the Loop Variable Filter window to perform even finer loop selection
(Section A3.3.1).

Show Parallel I/O [setting]: controls the way that a loop with I/O statements inside is displayed. By
default (Yes), loops with potential parallel I/O are classified as parallel although parallel I/O with
directives is not supported at this point.

RoutDup [button]: activates the RoutineDuplication window (Section A3.5).

Why [button]: activates the WhyDirectives window (Section A3.4) after a loop is selected.

Update Directives [button]: activates the Update dialog box (Section A3.9) to re-perform the directives
analysis, usually after settings are changed.

Setting [button]: activates the Setting window (Section A3.6) to reset parameters for CAPO. The
window may also be launched from Edit–>Directives Setting… in the CAPTools main window.

Current Routine [textpane]: displays the source of a selected routine or a routine in which a selected
loop is located. The selected loop nest is highlighted.

A3.3. Loop Filters and Sub-filters

Definitions of basic loop types:

Serial loop — a loop with loop-carried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and/or exit statements.

Parallel loop — a loop without loop-carried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and exit statements. Such a loop
can be executed in parallel.

Reduction loop — a loop, other than one or more reduction operations, that can be executed in
parallel.

Pipeline loop — a loop that contains loop-carried TRUE dependences with determinable, non-
negative dependence vectors (see definition in Section 2.4). The loop can potentially be used to
set up a parallel pipeline with an outer loop.

Distributed loop — one of Parallel loop, Reduction loop or Pipeline loop.

How a loop or a statement is labeled:

Loop: Statement:

routine
name

loop
number

nesting
level

line
number

routine
name

line
number

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 71

Loop Filter: Totally Serial —
serial loop with loop-carried TRUE dependence, containing no
distributed loop and not nested inside other distributed loop. The
code section in the loop will be executed sequentially.

Sub-filter: True Recursion — no I/O or exit statements
I/O or Exit — with I/O and/or exit statements
No Granularity — one or no iteration
User Defined — user-defined serial loop

Loop Filter: Covered Serial —
serial loop with loop-carried TRUE dependence, containing
distributed loop or nested inside other distributed loop. The code
section in the loop will partially or completely be executed in parallel.

Sub-filter: True Recursion — no I/O or exit statements
I/O or Exit — with I/O and/or exit statements
Inside Parallel — inside other parallel loops
User Defined — user-defined serial loop

Loop Filter: Falsely Serial —
serial loop without loop-carried TRUE dependence, but containing
ANTI/OUTPUT dependence from non-privatizable variables. Loop
may contain distributed loops for parallel execution.

Sub-filter: Privatization — due to non-privatizable variables
I/O Statement — with I/O statements but no nested

parallel loops
No Granularity — no granularity and no nested parallel

loops
User Defined — user-defined serial loop

Loop Filter: Reductions —
loop with one or more reduction operations which can be executed as
parallel reductions.

Loop Filter: Pipeline —
A pipeline loop as part of a parallel pipeline working with an outer
loop.

Sub-filter: All — all loops with reductions/pipeline
User Defined — user-defined reduction loop

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 72

Loop Filter: Chosen (Parallel) —
parallel loop chosen for distribution with directives. The code section
in the loop will be executed in parallel.

Sub-filter: Normal — regular parallel loop
CopyIn/Out — with copyin/copyout variables
Ordered — with ordered code section
User Defined — user-defined parallel loop

Loop Filter: Not Chosen (Parallel) —
parallel loop not chosen due to other parallel loop(s) already been
chosen. The loop is either inside other distributed loop or contains
distributed loops.

Sub-filter: Inside Parallel — inside other parallel loops
I/O Statement — with I/O statements
No Granularity — parallel but no granularity
User Defined — user-defined parallel loop

A3.3.1. Loop Variable Filter Window

The Loop Variable Filter Window controls even finer selection of loops in conjunction with the main
loop filter and sub filter. The filter applies to variables used in loop heads.

Choice [setting]: controls the filtering effect.

Inclusion — show loops when variables appear
Exclusion — show loops when variables do not appear

Filter [setting]: disables or enables the loop variable filter.

Variable(s) [textfield]: contains a list of the currently filtered variables.

Routine [label]: indicates the currently selected
routine.

Variable List [list]: contains a list of variables
used in the loop heads of the current routine.

Scope [setting]: controls the scope of variables.

Loop Variable — variables from loop
iteration

Loop Limit — variables from loop
high-low limit

Either — either of the above
two cases

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 73

Add [button]: adds the selected variables in the Variable List to the filtered variable list.

Reset [button]: resets variable selection.

Apply [button]: applies the current filter to the display.

A3.4. WhyDirectives Window

The WhyDirectives window is displayed for a selected loop after the Why… button is clicked in the
Directives main window. It presents detailed information for the selected loop, in particular, reasons
and hints on why the loop was classified as serial or parallel. The window can be used to remove false
dependences identified by the user and to redefine the loop type. Depending on the current loop type,
the three variable lists may show different types of variables and the two loop lists may present
different information. The displayed window is for a loop of the Covered Serial type.

The following items are common for All Loop Types.

Loop [textfield]: currently selected loop with routine name and loop labels (see the end of Section A3.3).

Type [textfield]: loop type as described in Section A3.3.

Reason [textfield]: one sentence summarizing why the loop was classified to its type.

Hints [textarea]: more detailed summary of the usage of the relevant variables in the loop and whether
the loop contains I/O statements, exit statements, etc.

New Type [button]: activates the New Loop Type dialog box (Section A3.7).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 74

Select All [button]: selects all variables in the corresponding variable list.

Reset [button]: deselects all variables in the variable lists.

Remove [button]: activates the Variable Removal dialog box (Section A3.10) for the selected variables.

IO/Exit statements [list]: list of I/O and exit statements in the selected loop nest.

The following list is common for Totally Serial and Covered Serial.

True-dep. variables [list]: list of variables causing loop-carried TRUE dependences, removable. An "[x]"
followed a variable indicates the dependence vector length for this variable.

The following lists are common for Totally Serial, Covered Serial and Falsely Serial.

Anti-dep. variables [list]: list of variables causing loop-carried ANTI dependences and the variables
cannot be privatized, removable.

Output-dep. variables [list]: list of variables causing loop-carried OUTPUT dependences and the
variables cannot be privatized, removable.

Contains parallel loops [list]: list of parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop.

The above window is for a Falsely Serial loop.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 75

The following list is for Falsely Serial.

In/out-dep. variables [list]: list of variables that have TRUE data dependences from the outside the
loop, removable. A “<” sign in front of a variable indicates loop entry dependence on this variable, while
a “>” sign indicates loop exit dependence on this variable.

The following lists are common for Reductions, Pipeline, Chosen, and Not Chosen.

Private variables [list]: list of privatizable variables in the loop nest, not removable.

Shared variables [list]: list of shared variables in the loop nest, not removable.

Nested parallel loops [list]: list of secondary parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop (except for Pipeline).

The following list is only for Reduction Loop.

Reduction variables [list]: list of variables for reductions in the loop nest, not removable. Reduction
variables are preceded with labels indicating reduction operators or intrinsic functions. A “()” after a
variable indicates an array reduction.

The above window is for a Reduction loop with reduction array variable “sum() .” A reduction operator
or intrinsic is one of those defined in Section A3.8 or IMAX/IMIN (MAX/MIN expressed with an IF
statement block).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 76

The following lists are only for Pipeline Loop.

Inside parent loops [list]: list of loops that are nested above the current pipeline loop to form pipelines.
Appropriate synchronization directives and statements will be inserted at the code generation. A parent
loop is usually a serial loop without I/O and exit statement inside.

Other variables [list]: list of variables other than private and shared, such as CopyIn/CopyOut
variables, not removeable.

The above window is for a Pipeline loop with the parent loop highlighted.

The following lists are only for Chosen Parallel Loop.

Copyin/out variables [list]: list of variables that will be declared as CopyIn (FIRSTPRIVATE, marked
by “<”) and/or CopyOut (LASTPRIVATE, marked by “>”) due to potential conflict in updating the
same memory location and the variable(s) having usage outside the loop. It might arise, for example,
from an induction variable that is assigned before the loop and used after the loop. It could also indicate
a programming bug.

Controlled variables [list]: list of variables that will be placed inside an “ORDERED” code section. These
variables are usually inside IF conditional statements and the corresponding assignments need to be
executed in a designated order as is in sequential.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 77

The above windows is for Chosen parallel loop with Copyin/out variables.

The above window is for Chosen parallel loop with Controlled variables.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 78

A3.5. Routine Duplication Browser

The RoutineDuplication window is used for browsing routines that are to be or were duplicated to
avoid usage conflict of directives. The window is activated from the RoutDup… button in the
Directives browser main window.

Orig. Routines [list]: list of original routines to be duplicated.

Dup. Routines [list]: list of duplicated routines. Before code generation, this list will be empty. After
code generation, the list is filled with new routines that have one-to-one correspondence to the original
routines. The matched (original, duplicated) routine pairs are selected concurrently.

Number of Duplicated Routines [numeric]: as it says.

Calls Inside Parallel Loop [list]: list of call statements (to a selected original routine) that are inside
parallel loop(s).

Calls Outside Parallel Loop [list]: list of call statements (to a selected duplicated routine) that are
outside any parallel loop.

Inside Loop [textfield]: the loop that contains the selected call statement to an original routine.

Inside Call in Routine [textpane]: the source for the corresponding loop for Inside Loop. The textpane
is also used for displaying source code for the selected original routine.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 79

Outside Call in Routine [textpane]: the source around the selected call statement from the Call Outside
Parallel Loop list. The textpane is also used for displaying source code for the selected duplicated
routine.

A3.6. Parameter Setting Window

A default setup for the Parameter Setting window is displayed on the left. It is launched from either the
Setting… button in the Directives main window or the Edit → Directives Setting… in CAPTools main
window. The window is used to reset parameters for CAPO to control the directives analysis and
generation. The available parameters and their values are described in Section A1.

CAPO Version: the current version
number of CAPO.

Date Built: date on which the
current version of CAPO was built.

Update [button]: re-performs direc-
tives analysis with the current
parameters.

Apply [button]: applies the current
parameter setting without perfor-
ming the directives analysis.

Loop Granularity [numeric]: the
minimum number of iterations in a
loop for the consideration as a
distributed loop. If the number is 0
or if the number of iterations
cannot be evaluated, there will be
no check on the granularity for the
loop.

For detailed information on settings and checks, see Section A1.3 and Section A2. The following briefly
describes each setting and check box in the window.

Log Information [setting]:
Minimum — minimum log information, such as warning and info messages,
Standard — “Minimum” information plus statistics for loops and regions,
More — “Standard” information plus more detailed loop and region

information,
Debug — “More” information plus much more for debugging purpose.

For both More and Debug, loop and region labels are inserted in the generated
source code.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 80

Directive Type [setting]:
OpenMP — generate OpenMP directives (default),
SGI — generate SGI native directives,
SGIxtension— generate OpenMP directives with SGI extensions,
No Directive— create source file without directives.

Region Type [setting]:
One Loop — only one loop for one region,
Pblk + One Loop — one pre-block plus one loop for one region,
One Region — regions are not joined,
Joined Region — regions are joined, no pipeline consideration,
Full Region — consider joined region and possible pipeline (default).

Optimization [setting]:
Off — do not do any optimization,
On — try to reduce synchronization at end-of-loop,
O2 — use logical disprove (slow sometime) for affinity comparison,
O3 — enable additional optimization (such as automatic loop transformation)

before directive insertion.

Routine Duplication [setting]:
Loop Usage — routine duplicated if it is used both inside and outside parallel

Loops (no nested parallel region),
Region Usage — routine duplicated if it is used inside a parallel loop and inside

parallel region but outside parallel loop (allow nested parallel region).

Others [checkbox]:
Process THREADPRIVATE  enable/disable the THREADPRIVATEdirective
Generate NOWAIT  enable/disable the NOWAITdirective
Transform Induction Loop  enable/disable induction loop treatment
Handle Array Reduction  enable/disable array reduction
Remove Old Directives  enable/disable removing old directives
Apply UserLoop Type  enable/disable applying userloop types
Setup Pipeline Loop  enable/disable pipeline loop
Use f77 Comment Style  use f77 (not checked) or f90 (checked) comment style
Allow Unknown-Size Array  enable/disable the use unknown-size array in PRIVATE
Use Partitioned Loop  enable/disable partitioned loop for directives

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 81

A3.7. User Loop Type Window

The loop type window is used to redefine a loop type manually. It is displayed for a selected loop by
clicking on the New Type button in the WhyDirectives window.

Loop [textfield]: print of the selected loop.

Current Type [textfield]: the current loop type.

Update [button]: saves the newly defined loop type to
the userloop.par file and re-performs the directives
analysis with the new setting.

Apply [button]: saves the newly defined loop type to
the userloop.par file but does not re-perform the
directives analysis.

New Type [setting]: one of the selectable types.

Parallel – a parallel loop
Serial – a serial loop
Reduction – a parallel loop with reduction. The Reduction setting may activate an additional

dialog box: Reduction Operator (See Section A3.8).
Break – a serial loop excluded from any parallel region
Original – the type originally set by CAPO.

An un-selectable type indicates a type that cannot be converted to from the current type.

A3.8. Reduction Operator Dialog

This is a dialog box to select an option (or options) for user-defined reduction loop type. The option
specifies reduction operators/intrinsics and variables as part of the entry in the userloop.par file. See
Section A1.3 for the description of the userloop.par file.

The dialog box is activated only if the Reduction
setting in the LoopType window is selected and
there exist potential reducible variables detected in
the loop by CAPO.

Loop [textfield]: print of the selected loop.

Variables [list]: list of variables that can potentially
be selected as reduction variables, selectable.

Operator/Intrinsic [setting]: one of the defined
reduction operators or intrinsic functions.

Select All [button]: selects all the variables in the
variable list.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 82

Reset [setting]: resets any previous selection. The textfield on the right lists the selected Operator/
Intrinsic and variables.

Apply [button]: creates an [operator/intrinsic:variables] combination and add to the option list for the
currently selected loop. The option and user-loop type are only stored to the userloop.par file when the
Apply or Update button in the LoopType window is pressed.

A3.9. Updating Directives Dialog

This is a dialog box for confirming the analysis of directives with new settings. It is popped up after the
Update button in the Directives browser main window is pushed.

Update [button]: performs the directives analysis,
including loop and region level analysis, without
generating directives. The dialog will be disabled after
the OpenMP directives code is generated.

A3.10. Variable Removal Confirmation Dialog

The dialog is used for confirming the removal of dependences for selected variables and types. The
variables and types are determined in the WhyDirectives window and the dialog box is activated by
pushing the Remove button. This box provides a shortcut to the DepGraph for quickly deleting false
dependences.

Selected Vars [textfield]: list of selected
variables from the WhyDirectives window
(Section A3.4). A variable listed multiple times
indicates it is selected from multiple variable
lists in the WhyDirectives window.

Apply [button]: applies the removal action.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 83

A3.11. Data Graph Window

The Data Graph window is used to create graphs for development purpose. It may have little use to a
typical user, but is included for reference. The window is activated from View→Data Graph in the
CAPTools main window. If the “Data Graph” menu item is not present, try to start CAPO with the [-
capodg] option.

Scope [setting]: defines the scope of the routine list.

Graph Type [setting]: chooses from one of the predefined graph types.

Intrinsics [setting]: excludes or includes intrinsic functions in the routine list and in the graph.

Routines [list]: list of routines (name of the file containing a routine).

Order [setting]: defines the way routines are listed (Alphabetic, Strict, Reversed Strict).

Blocks [list]: list of basic program blocks in the selected routine.

Create [button]: creates a graph for the selected routine and/or block (currently xvcg is used to display
the graph).

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 84

A3.12. Hookups to CAPTools

For CAPO-enabled CAPTools, additional items are added to the File (Save OpenMP Directives Code),
View (Directives) and Edit (Directives Setting) menus in the CAPTools main window (Section A3.1).
The menu items that are relevant to directives generation are summarized here.

Before source is loaded After source is loaded After communication is generated

The File menu:

Load F77 Source [entry]: loads Fortran 77 source
(.f or .list file).

Load Database [entry]: loads a previously saved
database (.dbs file).

Save Database [entry]: saves the current analysis
result to a database. As of CAPO Version 1.1, the
directives analysis result is not yet saved to the
database. But the inserted directives are saved.

The Save Database dialog box.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 85

Save OpenMP Directives Code
[entry]: performs the directives
analysis if it has not been done
and generates OpenMP direc-
tives. The code can be saved to
multiple files or to a single file.

The Save OpenMP Directives Code dialog box.

The View menu:
Directives [entry]:
activates the Directives
browser, which performs
the directives analysis (if
not yet done) and presents
information on directives.

The Edit menu:
Directives Setting [entry]:
activates the Setting
dialog box as given in
Section A3.6. It can be
used to set up parameters
for CAPO before the the
directives analysis is
performed.

A P P E N D I X : C A P O G R A P H I C U S E R I N T E R F A C E

CAPO User Manual 86

The following popup menus are hookups to various tools from selected lists or items in a GUI window,
usually activated with a right-mouse-button click.

Command Menu [popup]: for a selected statement.

Loop Menu [popup]: for a selected loop.

Routine Menu [popup]: for a selected routine.

Variable Menu [popup]: for a selected variable.

CAPO User Manual 87

A4. CAPO Command Interface

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools
command interface. It provides a way to access the functionality of GUI components without starting
the GUI. It serves as a means to record actions (to a log file) as a result of any user GUI activities so that
these actions can be played back later. The commands in the command interface are usually recorded to
a log file or a command file with

capo –logfile capo_run.cmd

and played back with

capo [-batch] capo_run.cmd .

The second line with the [-batch] option can be used to start a CAPO session in a batch mode.

The command interface for CAPO is different from the command-line version of CAPO, which takes
simply the database as input and creates the Fortran output:

capo –capoc [-options] database.dbs output.f .

This stand-alone version is mostly for testing purpose. The command interface is the preferred method.

A4.1. Commands for the Command Interface

CAPO commands start with the keyword “capo ” to distinguish them from CAPTools commands.

Main commands:

load <file.dbs>
- Load database file

capo version 1
- Define CAPO command version

capo removedep <routine> <variable> <loop_number> <dtype> <fc> [<drout>]
- Remove loop-related data dependences

* routine - routine name
* variable - relevant variable in the routine
* loop_number - loop to be considered
* dtype - dependence type: 1 for loop-carried TRUE dependences

2 for TRUE dependences from outside loop
3 for loop-carried ANTI dependences
4 for loop-carried OUTPUT dependences

* fc - 1 father list, 2 child list, 0 both lists
* [drout] – optional field to define routine in which the variable is actually declared (if it

is different from <routine >)

capo update [0/1]
- Perform directives analysis with the new setting

'0' for initial analysis, '1' for new update

capo passtwo

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 88

- Re-perform the pass-two analysis

capo generate [<file.f>]
- Generate OpenMP directives. <file.f> is used to define the logfile name, i.e. <file.log >.

If <file.f > is not given, “capo-info.log ” is assumed for the logfile name.

save source <file.f> 3 0
- Save source code to <file.f>

'3' indicates a single file

("load " and "save " are two CAPTools commands. See A-4.2 for details.)

Parameter setting commands:

capo set log-file on/off/stdout
- Turn on/off information logging, default is on

capo set log-file-name <filename>
- Define log filename, default is "capo-info.log"

capo set log-info minl/std/more/debug
- Select log information type, default is std

capo set loop-granularity <value>
- Set loop granularity threshold, default value = 6

capo set directive-type omp/sgi/sgix/no
- Select directive type, default is omp

capo set optimize-type off/o1/o2/o3
- Set the optimization type, default is o2

capo set user-loop-file <filename>
- Define user loop file, default is "userloop.par"

capo set directive-clear off/on/<filename>
- Turn on/off old directive clearing, default is on

A <filename> is used to define a new set of directives

capo set comment-type f77/f90
- Set the comment type for directive, default is f90

capo set use-parti-loop yes/no
- Allow the partitioned loop for directive, default is no

capo set rdup-type loop/region
- Select the routine duplication type, default is region

capo set allow-pio no/incall/write/noread/any
- Allow parallel I/O type, default is no

Setting commands for debugging purpose:

capo set mflag <mflag_value>
- Define the module flag

<mflag_value> can be <number>/<m1:m2..> with [+-] sign

capo set region-type default/loop/bloop/one/join/full
- Set a region type, default is full

capo set tpriv-directive on/off
- Turn on/off the generation of THREADPRIVATE, default is on

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 89

capo set allow-unksize true/false
- Allow the use of unknown-size private variables, default is false

capo set have-pipeloop true/false
- Generate pipeline loop, default is true

capo set have-induc true/false
- Treat parallel induction loop, default is true

capo set have-arreduc true/false
- Treat array reduction, default is true

capo set have-nowait true/false
- Generate the NOWAITdirective, default is true

capo set apply-userloop yes/no
- Apply user defined loop types, default is yes

capo set apply-dirclear yes/no
- Apply old directive clearing, default is yes

A4.2. Other CAPTools Commands Useful for CAPO

version 2
- Define CAPTools command version

load <file.f/file.list/file.dbs>
- Load source/database file

save database <file.dbs>
- Save to database

save source <dir/suffix/file.f> <1/2/3> 0
- Save source with type 1, 2 or 3

Type 1: Save to original files, <dir> is required for directory name
Type 2: Save to original files with <suffix> , <dir/suffix> required
Type 3: Save to a single file with file name <file.f>

set exact on
set scaler on
set knowledge on
set disproofs on
set interprocedural on
set logic on

- Settings for the analysis power

add read knowledge applu:76:((nx-5 .GT. 0))
- Define read user knowledge

analyse
- Perform dependence analysis

A4.3. An Example of "capo_run.cmd"

version 2
load applu_full.dbs
capo version 1
capo set log-file-name applu_omp.log
capo update 0

A P P E N D I X : C A P O C O M M A N D I N T E R F A C E

CAPO User Manual 90

capo removedep setb v u 1 4 0
capo removedep setb v u 3 4 0
capo removedep setb v u 5 4 0
capo update 1
capo generate
save source applu_omp.f 3 0

To use the command file, do "capo -batch capo_run.cmd".

